Properties

Label 2.2e3_1489.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 1489 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$11912= 2^{3} \cdot 1489 $
Artin number field: Splitting field of $f= x^{8} + 70 x^{6} + 1405 x^{4} - 5612 x^{2} + 8100 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e3_1489.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 193 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 123\cdot 193 + 30\cdot 193^{2} + 34\cdot 193^{3} + 37\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 95\cdot 193 + 132\cdot 193^{2} + 146\cdot 193^{3} + 139\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 84 + 120\cdot 193 + 39\cdot 193^{2} + 6\cdot 193^{3} + 157\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 96 + 100\cdot 193 + 51\cdot 193^{2} + 74\cdot 193^{3} + 126\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 97 + 92\cdot 193 + 141\cdot 193^{2} + 118\cdot 193^{3} + 66\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 109 + 72\cdot 193 + 153\cdot 193^{2} + 186\cdot 193^{3} + 35\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 173 + 97\cdot 193 + 60\cdot 193^{2} + 46\cdot 193^{3} + 53\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 186 + 69\cdot 193 + 162\cdot 193^{2} + 158\cdot 193^{3} + 155\cdot 193^{4} +O\left(193^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$
$(1,4)(2,7)(3,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,8)(6,7)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,4)(2,7)(3,6)(5,8)$$0$
$2$$4$$(1,7,5,6)(2,4,3,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.