Properties

Label 2.2e3_13e2.6t5.2c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{3} \cdot 13^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$1352= 2^{3} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} - x^{7} - x^{6} + 11 x^{5} - 2 x^{4} - 20 x^{3} + 19 x^{2} - 7 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.2e3_13.6t1.4c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 3 + \left(15 a^{2} + 14 a + 5\right)\cdot 17 + \left(9 a^{2} + 12 a + 8\right)\cdot 17^{2} + \left(14 a^{2} + 14 a + 13\right)\cdot 17^{3} + \left(2 a^{2} + 12 a + 13\right)\cdot 17^{4} + \left(15 a^{2} + 7 a + 3\right)\cdot 17^{5} + \left(2 a^{2} + 2 a + 9\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 4 a^{2} + 10 a + \left(6 a^{2} + 7 a + 5\right)\cdot 17 + \left(16 a^{2} + 8 a + 1\right)\cdot 17^{2} + \left(2 a + 10\right)\cdot 17^{3} + \left(8 a^{2} + 2 a + 11\right)\cdot 17^{4} + \left(10 a^{2} + 10 a\right)\cdot 17^{5} + \left(5 a^{2} + 6 a + 11\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 5 a^{2} + 15 a + \left(6 a^{2} + 8 a + 1\right)\cdot 17 + \left(4 a^{2} + 8 a + 15\right)\cdot 17^{2} + \left(9 a^{2} + 8 a\right)\cdot 17^{3} + \left(14 a^{2} + 9 a + 3\right)\cdot 17^{4} + \left(9 a^{2} + 9 a + 9\right)\cdot 17^{5} + \left(8 a^{2} + 4 a + 10\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 13 a^{2} + 8 a + 6 + \left(12 a^{2} + 11 a + 9\right)\cdot 17 + \left(7 a^{2} + 12 a + 12\right)\cdot 17^{2} + \left(a^{2} + 16 a + 4\right)\cdot 17^{3} + \left(6 a^{2} + a + 10\right)\cdot 17^{4} + \left(8 a^{2} + 16 a + 10\right)\cdot 17^{5} + \left(8 a^{2} + 7 a + 1\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 12 a^{2} + 7 a + 9 + \left(2 a^{2} + 6 a + 15\right)\cdot 17 + \left(9 a^{2} + 14 a + 14\right)\cdot 17^{2} + \left(12 a^{2} + 16 a + 9\right)\cdot 17^{3} + \left(a^{2} + 9 a + 1\right)\cdot 17^{4} + \left(9 a^{2} + 11 a + 4\right)\cdot 17^{5} + \left(6 a^{2} + 6 a + 9\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 10 a^{2} + 11 a + 2 + \left(9 a^{2} + 15 a + 3\right)\cdot 17 + \left(16 a^{2} + 5 a + 14\right)\cdot 17^{2} + \left(4 a^{2} + 11 a + 4\right)\cdot 17^{3} + \left(10 a^{2} + 4 a + 7\right)\cdot 17^{4} + \left(6 a^{2} + 9 a + 2\right)\cdot 17^{5} + \left(a^{2} + 12 a\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 2 a^{2} + 2 a + 15 + \left(3 a^{2} + 9 a + 15\right)\cdot 17 + \left(6 a^{2} + 11 a + 4\right)\cdot 17^{2} + \left(6 a^{2} + 8 a + 10\right)\cdot 17^{3} + \left(15 a^{2} + 5 a + 3\right)\cdot 17^{4} + \left(13 a^{2} + 6 a + 6\right)\cdot 17^{5} + \left(3 a^{2} + 13 a + 7\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 10 a^{2} + 9 + \left(7 a^{2} + 16 a + 7\right)\cdot 17 + \left(6 a^{2} + 13 a + 16\right)\cdot 17^{2} + \left(a^{2} + 16 a + 6\right)\cdot 17^{3} + \left(4 a^{2} + a + 7\right)\cdot 17^{4} + \left(10 a^{2} + a + 9\right)\cdot 17^{5} + \left(4 a^{2} + 16 a + 13\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 12 a^{2} + 16 a + 9 + \left(4 a^{2} + 11 a + 5\right)\cdot 17 + \left(8 a^{2} + 13 a + 14\right)\cdot 17^{2} + \left(16 a^{2} + 5 a + 6\right)\cdot 17^{3} + \left(4 a^{2} + 2 a + 9\right)\cdot 17^{4} + \left(a^{2} + 13 a + 4\right)\cdot 17^{5} + \left(9 a^{2} + 14 a + 5\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,6)(3,4)(5,8)$
$(2,8)(4,9)(6,7)$
$(1,2,3,7,5,9)(4,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,6)(3,4)(5,8)$$0$
$1$$3$$(1,3,5)(2,7,9)(4,8,6)$$2 \zeta_{3}$
$1$$3$$(1,5,3)(2,9,7)(4,6,8)$$-2 \zeta_{3} - 2$
$2$$3$$(1,7,6)(2,8,5)(3,9,4)$$-1$
$2$$3$$(1,8,9)(2,3,6)(4,7,5)$$\zeta_{3} + 1$
$2$$3$$(1,9,8)(2,6,3)(4,5,7)$$-\zeta_{3}$
$3$$6$$(1,2,3,7,5,9)(4,6,8)$$0$
$3$$6$$(1,9,5,7,3,2)(4,8,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.