Properties

Label 2.2e3_137.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 137 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1096= 2^{3} \cdot 137 $
Artin number field: Splitting field of $f= x^{8} + 14 x^{6} - 19 x^{4} + 620 x^{2} + 1156 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3_137.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 283 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 35 + 259\cdot 283 + 28\cdot 283^{2} + 53\cdot 283^{3} + 182\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 64 + 176\cdot 283 + 173\cdot 283^{2} + 106\cdot 283^{3} + 153\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 71 + 181\cdot 283 + 34\cdot 283^{2} + 216\cdot 283^{3} + 68\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 100 + 98\cdot 283 + 179\cdot 283^{2} + 269\cdot 283^{3} + 39\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 183 + 184\cdot 283 + 103\cdot 283^{2} + 13\cdot 283^{3} + 243\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 212 + 101\cdot 283 + 248\cdot 283^{2} + 66\cdot 283^{3} + 214\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 219 + 106\cdot 283 + 109\cdot 283^{2} + 176\cdot 283^{3} + 129\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 248 + 23\cdot 283 + 254\cdot 283^{2} + 229\cdot 283^{3} + 100\cdot 283^{4} +O\left(283^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,8)(3,5)(4,6)$$-2$
$2$$2$$(1,2)(3,6)(4,5)(7,8)$$0$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$4$$(1,4,7,6)(2,3,8,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.