Properties

Label 2.2e3_137.4t3.5
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 137 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1096= 2^{3} \cdot 137 $
Artin number field: Splitting field of $f= x^{8} - 34 x^{6} + 261 x^{4} - 620 x^{2} + 196 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 167 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 24 + 116\cdot 167 + 69\cdot 167^{2} + 139\cdot 167^{3} + 57\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 50 + 26\cdot 167 + 145\cdot 167^{2} + 41\cdot 167^{3} + 97\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 54 + 99\cdot 167 + 136\cdot 167^{3} + 119\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 80 + 9\cdot 167 + 76\cdot 167^{2} + 38\cdot 167^{3} + 159\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 87 + 157\cdot 167 + 90\cdot 167^{2} + 128\cdot 167^{3} + 7\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 113 + 67\cdot 167 + 166\cdot 167^{2} + 30\cdot 167^{3} + 47\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 117 + 140\cdot 167 + 21\cdot 167^{2} + 125\cdot 167^{3} + 69\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 143 + 50\cdot 167 + 97\cdot 167^{2} + 27\cdot 167^{3} + 109\cdot 167^{4} +O\left(167^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $-2$
$2$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $0$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $4$ $(1,4,7,6)(2,3,8,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.