Properties

Label 2.2e3_1361.4t3.5
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 1361 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$10888= 2^{3} \cdot 1361 $
Artin number field: Splitting field of $f= x^{8} + 66 x^{6} + 1249 x^{4} - 5608 x^{2} + 6400 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 17 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 1 + 11\cdot 17 + 6\cdot 17^{2} + 8\cdot 17^{3} + 9\cdot 17^{4} + 8\cdot 17^{5} + 11\cdot 17^{6} + 3\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 2 + 16\cdot 17 + 9\cdot 17^{2} + 2\cdot 17^{3} + 15\cdot 17^{4} + 7\cdot 17^{5} + 11\cdot 17^{6} + 16\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 4 + 11\cdot 17 + 14\cdot 17^{2} + 7\cdot 17^{3} + 13\cdot 17^{4} + 16\cdot 17^{5} + 10\cdot 17^{6} +O\left(17^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 7 + 4\cdot 17 + 14\cdot 17^{2} + 17^{3} + 4\cdot 17^{4} + 16\cdot 17^{5} + 16\cdot 17^{6} + 3\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 10 + 12\cdot 17 + 2\cdot 17^{2} + 15\cdot 17^{3} + 12\cdot 17^{4} + 13\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 13 + 5\cdot 17 + 2\cdot 17^{2} + 9\cdot 17^{3} + 3\cdot 17^{4} + 6\cdot 17^{6} + 16\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 15 + 7\cdot 17^{2} + 14\cdot 17^{3} + 17^{4} + 9\cdot 17^{5} + 5\cdot 17^{6} +O\left(17^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 16 + 5\cdot 17 + 10\cdot 17^{2} + 8\cdot 17^{3} + 7\cdot 17^{4} + 8\cdot 17^{5} + 5\cdot 17^{6} + 13\cdot 17^{7} +O\left(17^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,5)(4,8,7,6)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $-2$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $2$ $(1,6)(2,7)(3,8)(4,5)$ $0$
$2$ $4$ $(1,2,3,5)(4,8,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.