Properties

Label 2.2e3_131.24t22.2c1
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2^{3} \cdot 131 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$1048= 2^{3} \cdot 131 $
Artin number field: Splitting field of $f= x^{8} + 6 x^{6} - 6 x^{5} + 10 x^{4} - 18 x^{3} + 14 x^{2} - 20 x + 6 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.131.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 23\cdot 29 + 17\cdot 29^{2} + 26\cdot 29^{3} + 4\cdot 29^{4} + 5\cdot 29^{5} + 20\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 6 a + \left(4 a + 16\right)\cdot 29 + \left(26 a + 4\right)\cdot 29^{2} + \left(26 a + 22\right)\cdot 29^{3} + \left(21 a + 1\right)\cdot 29^{4} + \left(a + 20\right)\cdot 29^{5} + \left(25 a + 13\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 1 + \left(24 a + 2\right)\cdot 29 + \left(2 a + 15\right)\cdot 29^{2} + \left(2 a + 14\right)\cdot 29^{3} + \left(7 a + 26\right)\cdot 29^{4} + \left(27 a + 6\right)\cdot 29^{5} + \left(3 a + 21\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 9 + 16\cdot 29 + 2\cdot 29^{4} + 19\cdot 29^{5} + 28\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 25 a + 28 + \left(18 a + 23\right)\cdot 29 + \left(21 a + 22\right)\cdot 29^{2} + \left(15 a + 23\right)\cdot 29^{3} + \left(12 a + 20\right)\cdot 29^{4} + \left(28 a + 21\right)\cdot 29^{5} + \left(5 a + 20\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 1 + \left(21 a + 10\right)\cdot 29 + \left(12 a + 8\right)\cdot 29^{2} + \left(21 a + 28\right)\cdot 29^{3} + \left(12 a + 3\right)\cdot 29^{4} + \left(9 a + 1\right)\cdot 29^{5} + 11 a\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 17 a + 3 + \left(7 a + 18\right)\cdot 29 + \left(16 a + 21\right)\cdot 29^{2} + \left(7 a + 6\right)\cdot 29^{3} + \left(16 a + 17\right)\cdot 29^{4} + \left(19 a + 6\right)\cdot 29^{5} + \left(17 a + 18\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 4 a + 8 + \left(10 a + 6\right)\cdot 29 + \left(7 a + 25\right)\cdot 29^{2} + \left(13 a + 22\right)\cdot 29^{3} + \left(16 a + 9\right)\cdot 29^{4} + 6\cdot 29^{5} + \left(23 a + 22\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,4,5)(2,3,7,6)$
$(1,8)(2,7)(4,5)$
$(1,7,5)(2,8,4)$
$(1,4)(2,7)(3,6)(5,8)$
$(1,7,4,2)(3,5,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,7)(3,6)(5,8)$$-2$
$12$$2$$(1,8)(2,7)(4,5)$$0$
$8$$3$$(1,6,8)(3,5,4)$$-1$
$6$$4$$(1,7,4,2)(3,5,6,8)$$0$
$8$$6$$(1,5,6,4,8,3)(2,7)$$1$
$6$$8$$(1,2,8,3,4,7,5,6)$$-\zeta_{8}^{3} - \zeta_{8}$
$6$$8$$(1,7,8,6,4,2,5,3)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.