Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(104\)\(\medspace = 2^{3} \cdot 13 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 6.0.86528.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Projective image: | $S_3$ |
Projective field: | Galois closure of 3.1.104.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$:
\( x^{2} + 7x + 2 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 2 a + 1 + \left(8 a + 2\right)\cdot 11 + \left(8 a + 3\right)\cdot 11^{2} + \left(10 a + 7\right)\cdot 11^{3} + \left(7 a + 7\right)\cdot 11^{4} + \left(7 a + 6\right)\cdot 11^{5} +O(11^{6})\)
$r_{ 2 }$ |
$=$ |
\( 4 a + 2 + \left(5 a + 4\right)\cdot 11 + 5 a\cdot 11^{2} + \left(8 a + 9\right)\cdot 11^{3} + \left(a + 6\right)\cdot 11^{4} + \left(6 a + 2\right)\cdot 11^{5} +O(11^{6})\)
| $r_{ 3 }$ |
$=$ |
\( 5 + 5\cdot 11 + 9\cdot 11^{2} + 9\cdot 11^{3} + 2\cdot 11^{4} + 9\cdot 11^{5} +O(11^{6})\)
| $r_{ 4 }$ |
$=$ |
\( 9 + 10\cdot 11 + 5\cdot 11^{2} + 4\cdot 11^{3} + 3\cdot 11^{4} + 3\cdot 11^{5} +O(11^{6})\)
| $r_{ 5 }$ |
$=$ |
\( 9 a + 9 + \left(2 a + 10\right)\cdot 11 + \left(2 a + 7\right)\cdot 11^{2} + 8\cdot 11^{3} + \left(3 a + 6\right)\cdot 11^{4} + \left(3 a + 7\right)\cdot 11^{5} +O(11^{6})\)
| $r_{ 6 }$ |
$=$ |
\( 7 a + 7 + \left(5 a + 10\right)\cdot 11 + \left(5 a + 5\right)\cdot 11^{2} + \left(2 a + 4\right)\cdot 11^{3} + \left(9 a + 5\right)\cdot 11^{4} + \left(4 a + 3\right)\cdot 11^{5} +O(11^{6})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,6)(2,5)(3,4)$ | $-2$ |
$3$ | $2$ | $(2,3)(4,5)$ | $0$ |
$3$ | $2$ | $(1,2)(3,4)(5,6)$ | $0$ |
$2$ | $3$ | $(1,4,5)(2,6,3)$ | $-1$ |
$2$ | $6$ | $(1,2,4,6,5,3)$ | $1$ |