Properties

Label 2.10376.4t3.b.a
Dimension $2$
Group $D_4$
Conductor $10376$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_4$
Conductor: \(10376\)\(\medspace = 2^{3} \cdot 1297 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin field: Galois closure of 8.0.11590971882213376.2
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: even
Determinant: 1.10376.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{2}, \sqrt{1297})\)

Defining polynomial

$f(x)$$=$ \( x^{8} + 66x^{6} + 1281x^{4} - 4040x^{2} + 9216 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 6.

Roots:
$r_{ 1 }$ $=$ \( 4 + 58\cdot 97 + 27\cdot 97^{2} + 34\cdot 97^{3} + 41\cdot 97^{4} + 88\cdot 97^{5} +O(97^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 16 + 36\cdot 97 + 71\cdot 97^{2} + 23\cdot 97^{3} + 22\cdot 97^{4} + 31\cdot 97^{5} +O(97^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 32 + 44\cdot 97 + 86\cdot 97^{2} + 49\cdot 97^{3} + 9\cdot 97^{4} + 80\cdot 97^{5} +O(97^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 44 + 22\cdot 97 + 33\cdot 97^{2} + 39\cdot 97^{3} + 87\cdot 97^{4} + 22\cdot 97^{5} +O(97^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 53 + 74\cdot 97 + 63\cdot 97^{2} + 57\cdot 97^{3} + 9\cdot 97^{4} + 74\cdot 97^{5} +O(97^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 65 + 52\cdot 97 + 10\cdot 97^{2} + 47\cdot 97^{3} + 87\cdot 97^{4} + 16\cdot 97^{5} +O(97^{6})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 81 + 60\cdot 97 + 25\cdot 97^{2} + 73\cdot 97^{3} + 74\cdot 97^{4} + 65\cdot 97^{5} +O(97^{6})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 93 + 38\cdot 97 + 69\cdot 97^{2} + 62\cdot 97^{3} + 55\cdot 97^{4} + 8\cdot 97^{5} +O(97^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,8)(4,7)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,3)(2,7)(4,5)(6,8)$$0$
$2$$4$$(1,7,6,4)(2,3,5,8)$$0$