Properties

Label 2.2e3_1297.4t3.6
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 1297 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$10376= 2^{3} \cdot 1297 $
Artin number field: Splitting field of $f= x^{8} + 66 x^{6} + 1281 x^{4} - 4040 x^{2} + 9216 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 4 + 58\cdot 97 + 27\cdot 97^{2} + 34\cdot 97^{3} + 41\cdot 97^{4} + 88\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 16 + 36\cdot 97 + 71\cdot 97^{2} + 23\cdot 97^{3} + 22\cdot 97^{4} + 31\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 32 + 44\cdot 97 + 86\cdot 97^{2} + 49\cdot 97^{3} + 9\cdot 97^{4} + 80\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 44 + 22\cdot 97 + 33\cdot 97^{2} + 39\cdot 97^{3} + 87\cdot 97^{4} + 22\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 53 + 74\cdot 97 + 63\cdot 97^{2} + 57\cdot 97^{3} + 9\cdot 97^{4} + 74\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 65 + 52\cdot 97 + 10\cdot 97^{2} + 47\cdot 97^{3} + 87\cdot 97^{4} + 16\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 81 + 60\cdot 97 + 25\cdot 97^{2} + 73\cdot 97^{3} + 74\cdot 97^{4} + 65\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 93 + 38\cdot 97 + 69\cdot 97^{2} + 62\cdot 97^{3} + 55\cdot 97^{4} + 8\cdot 97^{5} +O\left(97^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $0$
$2$ $4$ $(1,7,6,4)(2,3,5,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.