Properties

Label 2.2024.6t3.b.a
Dimension $2$
Group $D_{6}$
Conductor $2024$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{6}$
Conductor: \(2024\)\(\medspace = 2^{3} \cdot 11 \cdot 23 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.0.94221248.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: even
Determinant: 1.2024.2t1.a.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.3.2024.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 3x^{5} + 15x^{4} - 25x^{3} + 34x^{2} - 22x + 8 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 6.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: \( x^{2} + 38x + 6 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 39 a + 5 + \left(4 a + 10\right)\cdot 41 + \left(3 a + 1\right)\cdot 41^{2} + \left(22 a + 2\right)\cdot 41^{3} + \left(16 a + 6\right)\cdot 41^{4} + \left(37 a + 16\right)\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 2 a + 40 + \left(36 a + 26\right)\cdot 41 + \left(37 a + 5\right)\cdot 41^{2} + \left(18 a + 24\right)\cdot 41^{3} + \left(24 a + 33\right)\cdot 41^{4} + \left(3 a + 29\right)\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 19 + 13\cdot 41 + 29\cdot 41^{2} + 13\cdot 41^{3} + 40\cdot 41^{4} + 16\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 2 a + 37 + \left(36 a + 30\right)\cdot 41 + \left(37 a + 39\right)\cdot 41^{2} + \left(18 a + 38\right)\cdot 41^{3} + \left(24 a + 34\right)\cdot 41^{4} + \left(3 a + 24\right)\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 39 a + 2 + \left(4 a + 14\right)\cdot 41 + \left(3 a + 35\right)\cdot 41^{2} + \left(22 a + 16\right)\cdot 41^{3} + \left(16 a + 7\right)\cdot 41^{4} + \left(37 a + 11\right)\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 23 + 27\cdot 41 + 11\cdot 41^{2} + 27\cdot 41^{3} + 24\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(1,3)(2,5)(4,6)$
$(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,4)(2,5)(3,6)$$-2$
$3$$2$$(1,2)(4,5)$$0$
$3$$2$$(1,3)(2,5)(4,6)$$0$
$2$$3$$(1,6,2)(3,5,4)$$-1$
$2$$6$$(1,5,6,4,2,3)$$1$