Properties

Label 2.2e3_113.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 113 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$904= 2^{3} \cdot 113 $
Artin number field: Splitting field of $f= x^{8} - 30 x^{6} + 193 x^{4} - 424 x^{2} + 256 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e3_113.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 233 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 27 + 35\cdot 233 + 132\cdot 233^{2} + 37\cdot 233^{3} + 144\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 36 + 154\cdot 233^{2} + 132\cdot 233^{3} + 99\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 78 + 158\cdot 233 + 34\cdot 233^{2} + 192\cdot 233^{3} + 116\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 92 + 39\cdot 233 + 145\cdot 233^{2} + 103\cdot 233^{3} + 105\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 141 + 193\cdot 233 + 87\cdot 233^{2} + 129\cdot 233^{3} + 127\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 155 + 74\cdot 233 + 198\cdot 233^{2} + 40\cdot 233^{3} + 116\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 197 + 232\cdot 233 + 78\cdot 233^{2} + 100\cdot 233^{3} + 133\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 206 + 197\cdot 233 + 100\cdot 233^{2} + 195\cdot 233^{3} + 88\cdot 233^{4} +O\left(233^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,2,4)(5,8,6,7)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,6)(7,8)$$-2$
$2$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$2$$2$$(1,7)(2,8)(3,6)(4,5)$$0$
$2$$4$$(1,3,2,4)(5,8,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.