Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 12 a + 6 + \left(7 a + 1\right)\cdot 13 + \left(6 a + 4\right)\cdot 13^{2} + 9 a\cdot 13^{3} + \left(12 a + 9\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 a + 3 + \left(5 a + 7\right)\cdot 13 + \left(10 a + 9\right)\cdot 13^{2} + 3\cdot 13^{3} + \left(5 a + 2\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ a + 5 + \left(5 a + 10\right)\cdot 13 + \left(6 a + 2\right)\cdot 13^{2} + \left(3 a + 3\right)\cdot 13^{3} + 12\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 5 + 11\cdot 13 + 7\cdot 13^{2} + 11\cdot 13^{3} + 8\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 9 a + 7 + \left(7 a + 8\right)\cdot 13 + \left(2 a + 1\right)\cdot 13^{2} + \left(12 a + 7\right)\cdot 13^{3} + \left(7 a + 6\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,3)(2,5)$ |
| $(1,2)(4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $5$ | $2$ | $(1,3)(2,5)$ | $0$ |
| $2$ | $5$ | $(1,5,4,2,3)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2} - 1$ |
| $2$ | $5$ | $(1,4,3,5,2)$ | $\zeta_{5}^{3} + \zeta_{5}^{2}$ |
The blue line marks the conjugacy class containing complex conjugation.