Properties

Label 2.2e3_101.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{3} \cdot 101 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$808= 2^{3} \cdot 101 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 11 x^{4} - 8 x^{3} - x^{2} - 7 x - 25 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.2e3_101.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 3 + \left(20 a + 11\right)\cdot 23 + \left(11 a + 19\right)\cdot 23^{2} + \left(17 a + 20\right)\cdot 23^{3} + \left(21 a + 1\right)\cdot 23^{4} + \left(13 a + 11\right)\cdot 23^{5} + \left(18 a + 16\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 9 + 12\cdot 23 + 17\cdot 23^{2} + 14\cdot 23^{3} + 9\cdot 23^{4} + 18\cdot 23^{5} + 11\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ a + 20 + \left(7 a + 14\right)\cdot 23 + \left(2 a + 15\right)\cdot 23^{2} + \left(13 a + 7\right)\cdot 23^{3} + \left(4 a + 21\right)\cdot 23^{4} + \left(19 a + 13\right)\cdot 23^{5} + \left(8 a + 14\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 10 + \left(2 a + 14\right)\cdot 23 + \left(11 a + 22\right)\cdot 23^{2} + \left(5 a + 20\right)\cdot 23^{3} + \left(a + 4\right)\cdot 23^{4} + \left(9 a + 17\right)\cdot 23^{5} + \left(4 a + 16\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 22 + \left(15 a + 4\right)\cdot 23 + \left(20 a + 13\right)\cdot 23^{2} + \left(9 a + 8\right)\cdot 23^{3} + \left(18 a + 17\right)\cdot 23^{4} + \left(3 a + 1\right)\cdot 23^{5} + \left(14 a + 13\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 6 + 11\cdot 23 + 3\cdot 23^{2} + 19\cdot 23^{3} + 13\cdot 23^{4} + 6\cdot 23^{5} + 19\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,2,5,4,6)$
$(1,2)(5,6)$
$(2,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,4)$$-2$
$3$$2$$(1,2)(5,6)$$0$
$3$$2$$(1,5)(2,3)(4,6)$$0$
$2$$3$$(1,2,4)(3,5,6)$$-1$
$2$$6$$(1,3,2,5,4,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.