Properties

Label 2.2e3_1009.4t3.6
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 1009 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$8072= 2^{3} \cdot 1009 $
Artin number field: Splitting field of $f= x^{8} + 70 x^{6} + 1645 x^{4} + 6628 x^{2} + 44100 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 27 + 9\cdot 113 + 113^{2} + 4\cdot 113^{3} + 36\cdot 113^{4} + 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 34 + 53\cdot 113 + 62\cdot 113^{2} + 73\cdot 113^{3} + 42\cdot 113^{4} + 70\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 38 + 86\cdot 113 + 39\cdot 113^{2} + 64\cdot 113^{3} + 20\cdot 113^{4} + 107\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 45 + 17\cdot 113 + 101\cdot 113^{2} + 20\cdot 113^{3} + 27\cdot 113^{4} + 63\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 68 + 95\cdot 113 + 11\cdot 113^{2} + 92\cdot 113^{3} + 85\cdot 113^{4} + 49\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 75 + 26\cdot 113 + 73\cdot 113^{2} + 48\cdot 113^{3} + 92\cdot 113^{4} + 5\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 79 + 59\cdot 113 + 50\cdot 113^{2} + 39\cdot 113^{3} + 70\cdot 113^{4} + 42\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 86 + 103\cdot 113 + 111\cdot 113^{2} + 108\cdot 113^{3} + 76\cdot 113^{4} + 111\cdot 113^{5} +O\left(113^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $0$
$2$ $4$ $(1,7,6,4)(2,3,5,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.