Properties

Label 2.2e2_97e2.8t17.1c1
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{2} \cdot 97^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$37636= 2^{2} \cdot 97^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 10 x^{5} + 13 x^{4} - 10 x^{3} - 4 x^{2} + 6 x + 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd
Determinant: 1.2e2_97.4t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 241 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 68 + 74\cdot 241 + 20\cdot 241^{2} + 46\cdot 241^{3} + 121\cdot 241^{4} + 161\cdot 241^{5} + 78\cdot 241^{6} +O\left(241^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 73 + 195\cdot 241 + 13\cdot 241^{2} + 69\cdot 241^{3} + 31\cdot 241^{4} + 70\cdot 241^{5} + 75\cdot 241^{6} +O\left(241^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 94 + 155\cdot 241 + 111\cdot 241^{2} + 180\cdot 241^{3} + 58\cdot 241^{4} + 168\cdot 241^{5} + 12\cdot 241^{6} +O\left(241^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 110 + 104\cdot 241 + 30\cdot 241^{2} + 234\cdot 241^{3} + 120\cdot 241^{4} + 222\cdot 241^{5} + 143\cdot 241^{6} +O\left(241^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 191 + 231\cdot 241 + 77\cdot 241^{2} + 217\cdot 241^{3} + 106\cdot 241^{4} + 232\cdot 241^{5} + 110\cdot 241^{6} +O\left(241^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 212 + 147\cdot 241 + 78\cdot 241^{2} + 21\cdot 241^{3} + 181\cdot 241^{4} + 170\cdot 241^{5} + 5\cdot 241^{6} +O\left(241^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 228 + 187\cdot 241 + 213\cdot 241^{2} + 62\cdot 241^{3} + 135\cdot 241^{4} + 151\cdot 241^{5} + 111\cdot 241^{6} +O\left(241^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 233 + 107\cdot 241 + 176\cdot 241^{2} + 132\cdot 241^{3} + 208\cdot 241^{4} + 27\cdot 241^{5} + 184\cdot 241^{6} +O\left(241^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,8)(3,6)(5,7)$
$(2,8)(3,6)$
$(1,2,5,6,4,8,7,3)$
$(1,5,4,7)(2,3,8,6)$
$(2,3,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,8)(3,6)(5,7)$$-2$
$2$$2$$(2,8)(3,6)$$0$
$4$$2$$(1,2)(3,7)(4,8)(5,6)$$0$
$1$$4$$(1,5,4,7)(2,6,8,3)$$-2 \zeta_{4}$
$1$$4$$(1,7,4,5)(2,3,8,6)$$2 \zeta_{4}$
$2$$4$$(1,5,4,7)(2,3,8,6)$$0$
$2$$4$$(2,3,8,6)$$-\zeta_{4} - 1$
$2$$4$$(2,6,8,3)$$\zeta_{4} - 1$
$2$$4$$(1,5,4,7)(2,8)(3,6)$$\zeta_{4} + 1$
$2$$4$$(1,7,4,5)(2,8)(3,6)$$-\zeta_{4} + 1$
$4$$4$$(1,6,4,3)(2,5,8,7)$$0$
$4$$8$$(1,2,5,6,4,8,7,3)$$0$
$4$$8$$(1,6,7,2,4,3,5,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.