Properties

Label 2.2e2_97.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 97 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$388= 2^{2} \cdot 97 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 2 x^{5} + 45 x^{4} - 94 x^{3} + 18 x^{2} - 132 x + 484 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_97.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 24 + 86\cdot 101 + 19\cdot 101^{2} + 17\cdot 101^{3} + 55\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 + 86\cdot 101 + 95\cdot 101^{2} + 97\cdot 101^{3} + 57\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 38 + 73\cdot 101 + 12\cdot 101^{2} + 13\cdot 101^{3} + 75\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 68 + 9\cdot 101 + 52\cdot 101^{2} + 17\cdot 101^{3} + 35\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 74 + 32\cdot 101 + 16\cdot 101^{2} + 53\cdot 101^{3} + 36\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 81 + 19\cdot 101 + 34\cdot 101^{2} + 69\cdot 101^{3} + 53\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 94 + 92\cdot 101 + 33\cdot 101^{2} + 52\cdot 101^{3} + 42\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 99 + 2\cdot 101 + 38\cdot 101^{2} + 83\cdot 101^{3} + 47\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,4,6)(3,7,5,8)$
$(1,3)(2,8)(4,5)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,6)(3,5)(7,8)$$-2$
$2$$2$$(1,3)(2,8)(4,5)(6,7)$$0$
$2$$2$$(1,8)(2,5)(3,6)(4,7)$$0$
$2$$4$$(1,2,4,6)(3,7,5,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.