Properties

Label 2.2e2_89.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 89 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$356= 2^{2} \cdot 89 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} + 6 x^{5} + 45 x^{4} - 110 x^{3} + 98 x^{2} - 140 x + 100 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 10 + 4\cdot 73 + 40\cdot 73^{2} + 48\cdot 73^{3} + 44\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 42\cdot 73 + 51\cdot 73^{2} + 49\cdot 73^{3} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 + 58\cdot 73 + 61\cdot 73^{2} + 7\cdot 73^{3} + 14\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 + 71\cdot 73 + 60\cdot 73^{2} + 55\cdot 73^{3} + 55\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 25 + 12\cdot 73 + 56\cdot 73^{2} + 33\cdot 73^{3} + 31\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 34 + 41\cdot 73 + 65\cdot 73^{2} + 39\cdot 73^{3} + 13\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 42 + 15\cdot 73 + 37\cdot 73^{2} + 31\cdot 73^{3} + 63\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 59 + 46\cdot 73 + 64\cdot 73^{2} + 24\cdot 73^{3} + 68\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,6)(4,8,5,7)$
$(1,4)(2,7)(3,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,6)(4,5)(7,8)$ $-2$
$2$ $2$ $(1,4)(2,7)(3,5)(6,8)$ $0$
$2$ $2$ $(1,7)(2,5)(3,8)(4,6)$ $0$
$2$ $4$ $(1,2,3,6)(4,8,5,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.