Properties

Label 2.2e2_89.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 2^{2} \cdot 89 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$356= 2^{2} \cdot 89 $
Artin number field: Splitting field of $f= x^{4} - 5 x^{2} - 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 5 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 1 + 5 + 4\cdot 5^{2} + 2\cdot 5^{3} + 3\cdot 5^{4} + 4\cdot 5^{5} + 2\cdot 5^{6} + 2\cdot 5^{7} + 4\cdot 5^{8} +O\left(5^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 2 + 2\cdot 5 + 4\cdot 5^{4} + 5^{6} + 2\cdot 5^{7} + 2\cdot 5^{8} +O\left(5^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 3 + 2\cdot 5 + 4\cdot 5^{2} + 4\cdot 5^{3} + 4\cdot 5^{5} + 3\cdot 5^{6} + 2\cdot 5^{7} + 2\cdot 5^{8} +O\left(5^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 4 + 3\cdot 5 + 2\cdot 5^{3} + 5^{4} + 2\cdot 5^{6} + 2\cdot 5^{7} +O\left(5^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.