Properties

Label 2.2e2_7e2_29.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 7^{2} \cdot 29 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$5684= 2^{2} \cdot 7^{2} \cdot 29 $
Artin number field: Splitting field of $f= x^{6} + 19 x^{4} - 28 x^{3} + 83 x^{2} + 140 x + 225 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 39 + \left(21 a + 9\right)\cdot 41 + \left(35 a + 3\right)\cdot 41^{2} + \left(14 a + 8\right)\cdot 41^{3} + \left(19 a + 22\right)\cdot 41^{4} + \left(32 a + 34\right)\cdot 41^{5} + \left(28 a + 27\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 34 + \left(35 a + 9\right)\cdot 41 + \left(5 a + 8\right)\cdot 41^{2} + \left(36 a + 28\right)\cdot 41^{3} + \left(21 a + 1\right)\cdot 41^{4} + \left(11 a + 19\right)\cdot 41^{5} + \left(21 a + 39\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 38 a + 13 + \left(40 a + 24\right)\cdot 41 + \left(5 a + 27\right)\cdot 41^{2} + \left(9 a + 40\right)\cdot 41^{3} + \left(6 a + 16\right)\cdot 41^{4} + \left(22 a + 14\right)\cdot 41^{5} + \left(33 a + 4\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 39 a + 40 + \left(5 a + 30\right)\cdot 41 + \left(35 a + 31\right)\cdot 41^{2} + \left(4 a + 7\right)\cdot 41^{3} + \left(19 a + 31\right)\cdot 41^{4} + \left(29 a + 31\right)\cdot 41^{5} + \left(19 a + 9\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 29 a + 34 + \left(19 a + 20\right)\cdot 41 + \left(5 a + 6\right)\cdot 41^{2} + \left(26 a + 17\right)\cdot 41^{3} + \left(21 a + 24\right)\cdot 41^{4} + \left(8 a + 30\right)\cdot 41^{5} + \left(12 a + 40\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 3 a + 4 + 27\cdot 41 + \left(35 a + 4\right)\cdot 41^{2} + \left(31 a + 21\right)\cdot 41^{3} + \left(34 a + 26\right)\cdot 41^{4} + \left(18 a + 33\right)\cdot 41^{5} + 7 a\cdot 41^{6} +O\left(41^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,4)$
$(1,5,6,3,4,2)$
$(1,4,6)(2,5,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,3)(2,6)(4,5)$ $0$ $0$
$1$ $3$ $(1,6,4)(2,5,3)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,4,6)(2,3,5)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,4,6)(2,5,3)$ $-1$ $-1$
$2$ $3$ $(1,6,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,4,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$3$ $6$ $(1,5,6,3,4,2)$ $0$ $0$
$3$ $6$ $(1,2,4,3,6,5)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.