Properties

Label 2.2e2_7e2_13.6t5.3
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 7^{2} \cdot 13 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$2548= 2^{2} \cdot 7^{2} \cdot 13 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 6 x^{4} - 29 x^{3} + 50 x^{2} + 153 x + 365 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 55 a + 27 + \left(13 a + 59\right)\cdot 71 + \left(32 a + 38\right)\cdot 71^{2} + \left(68 a + 67\right)\cdot 71^{3} + \left(53 a + 16\right)\cdot 71^{4} + \left(25 a + 3\right)\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 48 + \left(4 a + 34\right)\cdot 71 + \left(11 a + 54\right)\cdot 71^{2} + \left(4 a + 40\right)\cdot 71^{3} + \left(70 a + 3\right)\cdot 71^{4} + \left(37 a + 26\right)\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 66 + \left(57 a + 31\right)\cdot 71 + \left(38 a + 18\right)\cdot 71^{2} + \left(2 a + 30\right)\cdot 71^{3} + \left(17 a + 56\right)\cdot 71^{4} + 45 a\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 59 a + 35 + \left(15 a + 12\right)\cdot 71 + \left(37 a + 56\right)\cdot 71^{2} + \left(21 a + 50\right)\cdot 71^{3} + \left(10 a + 69\right)\cdot 71^{4} + \left(50 a + 65\right)\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 46 a + 27 + \left(66 a + 18\right)\cdot 71 + \left(59 a + 1\right)\cdot 71^{2} + \left(66 a + 38\right)\cdot 71^{3} + 68\cdot 71^{4} + \left(33 a + 31\right)\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 11 + \left(55 a + 56\right)\cdot 71 + \left(33 a + 43\right)\cdot 71^{2} + \left(49 a + 56\right)\cdot 71^{3} + \left(60 a + 68\right)\cdot 71^{4} + \left(20 a + 13\right)\cdot 71^{5} +O\left(71^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3,4)$
$(1,5,6)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,2)(3,6)(4,5)$ $0$ $0$
$1$ $3$ $(1,6,5)(2,3,4)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,5,6)(2,4,3)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(2,3,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(2,4,3)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,5,6)(2,3,4)$ $-1$ $-1$
$3$ $6$ $(1,2,6,3,5,4)$ $0$ $0$
$3$ $6$ $(1,4,5,3,6,2)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.