Properties

Label 2.2e2_7e2_11.6t5.2c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 7^{2} \cdot 11 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$2156= 2^{2} \cdot 7^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{9} - x^{8} + 3 x^{7} + 4 x^{6} + 14 x^{5} - 3 x^{4} - 9 x^{3} + 7 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.7_11.6t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{3} + 2 x + 18 $
Roots:
$r_{ 1 }$ $=$ $ a^{2} + 5 + \left(2 a^{2} + 19 a + 1\right)\cdot 23 + \left(19 a^{2} + 10 a\right)\cdot 23^{2} + \left(7 a^{2} + 15 a + 17\right)\cdot 23^{3} + \left(10 a^{2} + 13 a + 10\right)\cdot 23^{4} + \left(16 a^{2} + 17 a\right)\cdot 23^{5} + \left(9 a^{2} + 18 a + 8\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 10 a^{2} + 15 a + 17 + \left(10 a^{2} + 14 a + 4\right)\cdot 23 + \left(22 a^{2} + 19 a + 12\right)\cdot 23^{2} + \left(20 a^{2} + 20 a + 11\right)\cdot 23^{3} + \left(22 a^{2} + 10 a + 4\right)\cdot 23^{4} + \left(2 a^{2} + 13\right)\cdot 23^{5} + \left(17 a^{2} + 2\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 16 a^{2} + 10 a + 6 + \left(3 a^{2} + 10 a + 8\right)\cdot 23 + \left(13 a^{2} + 20 a + 9\right)\cdot 23^{2} + \left(10 a^{2} + 12 a + 10\right)\cdot 23^{3} + \left(12 a^{2} + 5 a + 9\right)\cdot 23^{4} + \left(15 a^{2} + 10 a + 6\right)\cdot 23^{5} + \left(a^{2} + 8 a + 11\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 13 a^{2} + 15 a + 14 + \left(3 a^{2} + 4 a + 10\right)\cdot 23 + \left(12 a^{2} + 21 a + 11\right)\cdot 23^{2} + \left(16 a^{2} + 2 a + 11\right)\cdot 23^{3} + \left(7 a^{2} + 12 a + 20\right)\cdot 23^{4} + \left(22 a^{2} + 7 a + 11\right)\cdot 23^{5} + \left(3 a^{2} + 15 a + 16\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 19 a^{2} + 7 a + 22 + \left(2 a^{2} + 1\right)\cdot 23 + \left(22 a^{2} + 21 a + 17\right)\cdot 23^{2} + \left(13 a^{2} + 18 a + 15\right)\cdot 23^{3} + \left(8 a^{2} + 14 a + 21\right)\cdot 23^{4} + \left(11 a^{2} + 19 a + 4\right)\cdot 23^{5} + \left(22 a + 4\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 12 a^{2} + 8 a + 12 + \left(10 a^{2} + 12 a + 12\right)\cdot 23 + \left(4 a^{2} + 15 a + 3\right)\cdot 23^{2} + \left(17 a^{2} + 9 a + 14\right)\cdot 23^{3} + \left(12 a^{2} + 21 a + 21\right)\cdot 23^{4} + \left(3 a^{2} + 4 a + 13\right)\cdot 23^{5} + \left(19 a^{2} + 4 a + 20\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 13 a^{2} + 21 a + 2 + \left(11 a^{2} + 14 a + 11\right)\cdot 23 + \left(10 a^{2} + 11 a + 13\right)\cdot 23^{2} + \left(20 a^{2} + 17 a\right)\cdot 23^{3} + \left(10 a^{2} + 3 a + 15\right)\cdot 23^{4} + \left(18 a^{2} + 18 a + 2\right)\cdot 23^{5} + \left(17 a^{2} + a + 2\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 14 a^{2} + a + \left(16 a^{2} + 18 a + 5\right)\cdot 23 + \left(11 a^{2} + 3 a + 3\right)\cdot 23^{2} + \left(15 a^{2} + a + 10\right)\cdot 23^{3} + \left(6 a^{2} + 19 a + 11\right)\cdot 23^{4} + \left(12 a^{2} + 18 a + 21\right)\cdot 23^{5} + \left(18 a^{2} + 7 a + 12\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 17 a^{2} + 15 a + 15 + \left(7 a^{2} + 20 a + 13\right)\cdot 23 + \left(22 a^{2} + 13 a + 21\right)\cdot 23^{2} + \left(14 a^{2} + 15 a\right)\cdot 23^{3} + \left(22 a^{2} + 13 a\right)\cdot 23^{4} + \left(11 a^{2} + 17 a + 17\right)\cdot 23^{5} + \left(3 a^{2} + 12 a + 13\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5,4,7,9,2)(3,8,6)$
$(1,8)(3,4)(6,9)$
$(2,3)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,7)(2,4)(5,9)$$0$
$1$$3$$(1,4,9)(2,5,7)(3,6,8)$$2 \zeta_{3}$
$1$$3$$(1,9,4)(2,7,5)(3,8,6)$$-2 \zeta_{3} - 2$
$2$$3$$(1,6,2)(3,7,9)(4,8,5)$$\zeta_{3} + 1$
$2$$3$$(1,2,6)(3,9,7)(4,5,8)$$-\zeta_{3}$
$2$$3$$(1,7,8)(2,3,4)(5,6,9)$$-1$
$3$$6$$(1,5,4,7,9,2)(3,8,6)$$0$
$3$$6$$(1,2,9,7,4,5)(3,6,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.