Properties

Label 2.2e2_7e2_11.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 7^{2} \cdot 11 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$2156= 2^{2} \cdot 7^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 6 x^{4} - 37 x^{3} + 86 x^{2} - 67 x + 27 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.7_11.6t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 11 + \left(11 a + 12\right)\cdot 13 + \left(8 a + 4\right)\cdot 13^{2} + \left(a + 1\right)\cdot 13^{3} + \left(7 a + 12\right)\cdot 13^{4} + \left(3 a + 8\right)\cdot 13^{5} + \left(2 a + 6\right)\cdot 13^{6} + \left(4 a + 3\right)\cdot 13^{7} + \left(a + 1\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 12 + \left(11 a + 9\right)\cdot 13 + \left(8 a + 8\right)\cdot 13^{2} + \left(4 a + 3\right)\cdot 13^{3} + \left(7 a + 9\right)\cdot 13^{4} + \left(8 a + 2\right)\cdot 13^{5} + \left(5 a + 10\right)\cdot 13^{6} + \left(12 a + 10\right)\cdot 13^{7} + \left(4 a + 1\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 11 a + \left(9 a + 10\right)\cdot 13 + 12\cdot 13^{2} + \left(4 a + 11\right)\cdot 13^{3} + \left(11 a + 9\right)\cdot 13^{4} + \left(12 a + 1\right)\cdot 13^{5} + 4\cdot 13^{6} + \left(4 a + 12\right)\cdot 13^{7} + \left(9 a + 5\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 11 + \left(3 a + 8\right)\cdot 13 + \left(12 a + 3\right)\cdot 13^{2} + \left(8 a + 2\right)\cdot 13^{3} + \left(a + 4\right)\cdot 13^{4} + 3\cdot 13^{5} + \left(12 a + 5\right)\cdot 13^{6} + \left(8 a + 2\right)\cdot 13^{7} + \left(3 a + 11\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 5 + \left(a + 4\right)\cdot 13 + \left(4 a + 2\right)\cdot 13^{2} + \left(11 a + 7\right)\cdot 13^{3} + \left(5 a + 4\right)\cdot 13^{4} + \left(9 a + 5\right)\cdot 13^{5} + \left(10 a + 5\right)\cdot 13^{6} + \left(8 a + 5\right)\cdot 13^{7} + \left(11 a + 11\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 1 + \left(a + 6\right)\cdot 13 + \left(4 a + 6\right)\cdot 13^{2} + \left(8 a + 12\right)\cdot 13^{3} + \left(5 a + 11\right)\cdot 13^{4} + \left(4 a + 3\right)\cdot 13^{5} + \left(7 a + 7\right)\cdot 13^{6} + 4\cdot 13^{7} + \left(8 a + 7\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(2,5,4)$
$(1,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,5)(2,6)(3,4)$$0$
$1$$3$$(1,3,6)(2,5,4)$$-2 \zeta_{3} - 2$
$1$$3$$(1,6,3)(2,4,5)$$2 \zeta_{3}$
$2$$3$$(1,3,6)$$-\zeta_{3}$
$2$$3$$(1,6,3)$$\zeta_{3} + 1$
$2$$3$$(1,6,3)(2,5,4)$$-1$
$3$$6$$(1,4,3,2,6,5)$$0$
$3$$6$$(1,5,6,2,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.