Properties

Label 2.2e2_7e2_101.6t3.3
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 7^{2} \cdot 101 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$19796= 2^{2} \cdot 7^{2} \cdot 101 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 55 x^{4} - 28 x^{3} + 703 x^{2} + 702 x + 2997 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 40\cdot 41 + 12\cdot 41^{2} + 37\cdot 41^{3} + 34\cdot 41^{4} + 36\cdot 41^{5} + 4\cdot 41^{6} + 8\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 20 a + 4 + \left(32 a + 9\right)\cdot 41 + \left(38 a + 14\right)\cdot 41^{2} + \left(30 a + 38\right)\cdot 41^{3} + \left(20 a + 28\right)\cdot 41^{4} + \left(33 a + 31\right)\cdot 41^{5} + \left(34 a + 28\right)\cdot 41^{6} + \left(26 a + 26\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 32 a + 34 + \left(12 a + 17\right)\cdot 41 + \left(35 a + 8\right)\cdot 41^{2} + \left(28 a + 17\right)\cdot 41^{3} + \left(10 a + 1\right)\cdot 41^{4} + \left(2 a + 4\right)\cdot 41^{5} + \left(37 a + 25\right)\cdot 41^{6} + \left(6 a + 24\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 7 + \left(28 a + 24\right)\cdot 41 + \left(5 a + 19\right)\cdot 41^{2} + \left(12 a + 27\right)\cdot 41^{3} + \left(30 a + 4\right)\cdot 41^{4} + 38 a\cdot 41^{5} + \left(3 a + 11\right)\cdot 41^{6} + \left(34 a + 8\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 15 + 27\cdot 41 + 10\cdot 41^{2} + 33\cdot 41^{3} + 33\cdot 41^{4} + 20\cdot 41^{5} + 35\cdot 41^{6} + 23\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 21 a + 23 + \left(8 a + 4\right)\cdot 41 + \left(2 a + 16\right)\cdot 41^{2} + \left(10 a + 10\right)\cdot 41^{3} + \left(20 a + 19\right)\cdot 41^{4} + \left(7 a + 29\right)\cdot 41^{5} + \left(6 a + 17\right)\cdot 41^{6} + \left(14 a + 31\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6)(3,4)$
$(1,2,3,5,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,4)(3,6)$ $-2$
$3$ $2$ $(2,6)(3,4)$ $0$
$3$ $2$ $(1,2)(3,6)(4,5)$ $0$
$2$ $3$ $(1,3,4)(2,5,6)$ $-1$
$2$ $6$ $(1,2,3,5,4,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.