Properties

Label 2.2e2_7e2.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$196= 2^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} + 4 x^{5} - x^{4} + 4 x^{3} + 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 46\cdot 53 + 29\cdot 53^{2} + 27\cdot 53^{3} + 47\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 + 51\cdot 53 + 27\cdot 53^{2} + 11\cdot 53^{3} + 48\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 50\cdot 53 + 14\cdot 53^{2} + 32\cdot 53^{3} + 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 + 19\cdot 53 + 44\cdot 53^{3} + 51\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 41 + 15\cdot 53 + 14\cdot 53^{2} + 52\cdot 53^{3} + 40\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 42 + 42\cdot 53 + 7\cdot 53^{2} + 2\cdot 53^{3} + 5\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 46 + 10\cdot 53 + 33\cdot 53^{2} + 34\cdot 53^{3} + 8\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 51 + 27\cdot 53 + 30\cdot 53^{2} + 7\cdot 53^{3} + 8\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,6)(3,7,5,4)$
$(1,3)(2,4)(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,6)(3,5)(4,7)$ $-2$
$2$ $2$ $(1,3)(2,4)(5,8)(6,7)$ $0$
$2$ $2$ $(1,4)(2,5)(3,6)(7,8)$ $0$
$2$ $4$ $(1,2,8,6)(3,7,5,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.