Properties

Label 2.2e2_7_61.6t3.8c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 7 \cdot 61 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$1708= 2^{2} \cdot 7 \cdot 61 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 4 x^{4} - 10 x^{3} + 16 x^{2} - 16 x + 64 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even
Determinant: 1.2e2_7_61.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 9\cdot 29 + 20\cdot 29^{2} + 20\cdot 29^{3} + 7\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 + 22\cdot 29 + 10\cdot 29^{2} + 18\cdot 29^{3} + 18\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 15 + \left(4 a + 1\right)\cdot 29 + \left(20 a + 4\right)\cdot 29^{2} + \left(7 a + 18\right)\cdot 29^{3} + \left(22 a + 8\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 1 + 23\cdot 29 + \left(20 a + 12\right)\cdot 29^{2} + \left(17 a + 20\right)\cdot 29^{3} + \left(28 a + 8\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 3 + \left(24 a + 9\right)\cdot 29 + \left(8 a + 13\right)\cdot 29^{2} + \left(21 a + 7\right)\cdot 29^{3} + \left(6 a + 25\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 28 a + 6 + \left(28 a + 22\right)\cdot 29 + \left(8 a + 25\right)\cdot 29^{2} + \left(11 a + 1\right)\cdot 29^{3} + 18\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,6)(4,5)$
$(3,5)(4,6)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,6)(4,5)$$-2$
$3$$2$$(1,3)(2,6)(4,5)$$0$
$3$$2$$(1,6)(2,3)$$0$
$2$$3$$(1,6,4)(2,3,5)$$-1$
$2$$6$$(1,5,6,2,4,3)$$1$
The blue line marks the conjugacy class containing complex conjugation.