Properties

Label 2.2e2_7_61.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 7 \cdot 61 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$1708= 2^{2} \cdot 7 \cdot 61 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 7 x^{4} - 2 x^{3} + 66 x^{2} + 256 x + 248 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 30\cdot 31 + 15\cdot 31^{2} + 30\cdot 31^{3} + 18\cdot 31^{4} + 8\cdot 31^{5} + 7\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 17 a + 12 + \left(6 a + 19\right)\cdot 31 + \left(12 a + 7\right)\cdot 31^{2} + \left(30 a + 27\right)\cdot 31^{3} + \left(26 a + 30\right)\cdot 31^{4} + \left(3 a + 16\right)\cdot 31^{5} + \left(16 a + 5\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 20 a + 27 + \left(7 a + 2\right)\cdot 31 + \left(16 a + 26\right)\cdot 31^{2} + \left(27 a + 11\right)\cdot 31^{3} + \left(6 a + 28\right)\cdot 31^{4} + \left(18 a + 11\right)\cdot 31^{5} + \left(15 a + 5\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 14 a + 15 + \left(24 a + 15\right)\cdot 31 + \left(18 a + 25\right)\cdot 31^{2} + 13\cdot 31^{3} + \left(4 a + 23\right)\cdot 31^{4} + \left(27 a + 28\right)\cdot 31^{5} + \left(14 a + 2\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 11 a + 5 + \left(23 a + 29\right)\cdot 31 + \left(14 a + 19\right)\cdot 31^{2} + \left(3 a + 19\right)\cdot 31^{3} + \left(24 a + 14\right)\cdot 31^{4} + \left(12 a + 10\right)\cdot 31^{5} + \left(15 a + 18\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 5 + 27\cdot 31 + 28\cdot 31^{2} + 20\cdot 31^{3} + 7\cdot 31^{4} + 16\cdot 31^{5} + 22\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-2$
$3$ $2$ $(1,2)(3,4)(5,6)$ $0$
$3$ $2$ $(1,3)(4,6)$ $0$
$2$ $3$ $(1,5,3)(2,4,6)$ $-1$
$2$ $6$ $(1,4,5,6,3,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.