Properties

Label 2.2e2_7_37.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 7 \cdot 37 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$1036= 2^{2} \cdot 7 \cdot 37 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 6 x^{4} + 25 x^{3} - 48 x^{2} + 49 x - 21 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.7_37.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 24 a + 21 + \left(16 a + 13\right)\cdot 41 + \left(36 a + 20\right)\cdot 41^{2} + \left(18 a + 12\right)\cdot 41^{3} + \left(30 a + 5\right)\cdot 41^{4} + \left(37 a + 37\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 20 a + 4 + \left(14 a + 14\right)\cdot 41 + \left(8 a + 7\right)\cdot 41^{2} + \left(23 a + 38\right)\cdot 41^{3} + \left(11 a + 35\right)\cdot 41^{4} + \left(40 a + 13\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 21 + 36\cdot 41 + 17\cdot 41^{2} + 21\cdot 41^{3} + 36\cdot 41^{4} + 32\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 3 + 23\cdot 41 + 28\cdot 41^{2} + 2\cdot 41^{4} + 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 11 + \left(24 a + 39\right)\cdot 41 + \left(4 a + 30\right)\cdot 41^{2} + \left(22 a + 32\right)\cdot 41^{3} + \left(10 a + 36\right)\cdot 41^{4} + \left(3 a + 37\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 21 a + 23 + \left(26 a + 37\right)\cdot 41 + \left(32 a + 17\right)\cdot 41^{2} + \left(17 a + 17\right)\cdot 41^{3} + \left(29 a + 6\right)\cdot 41^{4} +O\left(41^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3,6,5,4)$
$(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,4)$$-2$
$3$$2$$(2,4)(3,5)$$0$
$3$$2$$(1,2)(3,4)(5,6)$$0$
$2$$3$$(1,3,5)(2,6,4)$$-1$
$2$$6$$(1,2,3,6,5,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.