Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 5 + 15\cdot 23 + 7\cdot 23^{2} + 11\cdot 23^{3} + 2\cdot 23^{4} + 6\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 8 a + 13 + \left(22 a + 16\right)\cdot 23 + \left(20 a + 22\right)\cdot 23^{2} + \left(4 a + 2\right)\cdot 23^{3} + \left(9 a + 20\right)\cdot 23^{4} + 16\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 17 a + 11 + \left(11 a + 11\right)\cdot 23 + \left(22 a + 19\right)\cdot 23^{2} + \left(17 a + 11\right)\cdot 23^{3} + \left(11 a + 10\right)\cdot 23^{4} + \left(14 a + 7\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 15 + 16\cdot 23^{2} + 2\cdot 23^{3} + 9\cdot 23^{4} + 5\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 15 a + 6 + 7\cdot 23 + \left(2 a + 19\right)\cdot 23^{2} + \left(18 a + 14\right)\cdot 23^{3} + \left(13 a + 10\right)\cdot 23^{4} + \left(22 a + 8\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 6 a + 22 + \left(11 a + 17\right)\cdot 23 + 6\cdot 23^{2} + \left(5 a + 2\right)\cdot 23^{3} + \left(11 a + 16\right)\cdot 23^{4} + \left(8 a + 1\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,5)(3,6)$ |
| $(1,2)(3,4)(5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,4)(2,3)(5,6)$ |
$-2$ |
| $3$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$0$ |
| $3$ |
$2$ |
$(1,6)(4,5)$ |
$0$ |
| $2$ |
$3$ |
$(1,3,6)(2,5,4)$ |
$-1$ |
| $2$ |
$6$ |
$(1,5,3,4,6,2)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.