Properties

Label 2.2e2_7_31.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 7 \cdot 31 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$868= 2^{2} \cdot 7 \cdot 31 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 13 x^{6} - 2 x^{5} + 137 x^{4} + 40 x^{3} + 428 x^{2} - 2312 x + 2164 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_7_31.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 131 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 17 + 44\cdot 131 + 39\cdot 131^{2} + 51\cdot 131^{3} + 81\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 4\cdot 131 + 86\cdot 131^{2} + 114\cdot 131^{3} + 107\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 30 + 115\cdot 131 + 69\cdot 131^{2} + 75\cdot 131^{3} + 74\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 31 + 45\cdot 131 + 43\cdot 131^{2} + 2\cdot 131^{3} + 129\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 44 + 116\cdot 131 + 73\cdot 131^{2} + 26\cdot 131^{3} + 122\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 51 + 97\cdot 131 + 62\cdot 131^{2} + 69\cdot 131^{3} + 81\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 79 + 99\cdot 131 + 70\cdot 131^{2} + 102\cdot 131^{3} + 45\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 123 + 131 + 78\cdot 131^{2} + 81\cdot 131^{3} + 12\cdot 131^{4} +O\left(131^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,8)(4,7)(5,6)$
$(1,3)(2,7)(4,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,4)(7,8)$$-2$
$2$$2$$(1,2)(3,8)(4,7)(5,6)$$0$
$2$$2$$(1,3)(2,7)(4,5)(6,8)$$0$
$2$$4$$(1,7,5,8)(2,3,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.