Properties

Label 2.2e2_7_29.6t5.1c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 7 \cdot 29 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$812= 2^{2} \cdot 7 \cdot 29 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 8 x^{4} + 19 x^{3} + 24 x^{2} - 29 x - 29 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Even
Determinant: 1.7_29.6t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 18 a + 5 + \left(13 a + 33\right)\cdot 41 + \left(28 a + 24\right)\cdot 41^{2} + \left(25 a + 33\right)\cdot 41^{3} + \left(15 a + 11\right)\cdot 41^{4} + \left(22 a + 33\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 22 a + 13 + \left(5 a + 17\right)\cdot 41 + \left(31 a + 40\right)\cdot 41^{2} + \left(37 a + 18\right)\cdot 41^{3} + \left(15 a + 11\right)\cdot 41^{4} + \left(21 a + 6\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 18 + \left(27 a + 14\right)\cdot 41 + \left(12 a + 14\right)\cdot 41^{2} + 15 a\cdot 41^{3} + \left(25 a + 33\right)\cdot 41^{4} + \left(18 a + 2\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 23 + \left(22 a + 11\right)\cdot 41 + \left(39 a + 32\right)\cdot 41^{2} + \left(39 a + 5\right)\cdot 41^{3} + \left(4 a + 35\right)\cdot 41^{4} + \left(31 a + 9\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 19 a + 38 + \left(35 a + 11\right)\cdot 41 + \left(9 a + 5\right)\cdot 41^{2} + \left(3 a + 19\right)\cdot 41^{3} + \left(25 a + 21\right)\cdot 41^{4} + \left(19 a + 13\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 39 a + 29 + \left(18 a + 34\right)\cdot 41 + \left(a + 5\right)\cdot 41^{2} + \left(a + 4\right)\cdot 41^{3} + \left(36 a + 10\right)\cdot 41^{4} + \left(9 a + 16\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,2)(3,4,5)$
$(1,6,2)$
$(1,5,2,4,6,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,4)(2,3)(5,6)$$0$
$1$$3$$(1,6,2)(3,4,5)$$2 \zeta_{3}$
$1$$3$$(1,2,6)(3,5,4)$$-2 \zeta_{3} - 2$
$2$$3$$(1,6,2)$$\zeta_{3} + 1$
$2$$3$$(1,2,6)$$-\zeta_{3}$
$2$$3$$(1,2,6)(3,4,5)$$-1$
$3$$6$$(1,5,2,4,6,3)$$0$
$3$$6$$(1,3,6,4,2,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.