Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 18 a + 5 + \left(13 a + 33\right)\cdot 41 + \left(28 a + 24\right)\cdot 41^{2} + \left(25 a + 33\right)\cdot 41^{3} + \left(15 a + 11\right)\cdot 41^{4} + \left(22 a + 33\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 22 a + 13 + \left(5 a + 17\right)\cdot 41 + \left(31 a + 40\right)\cdot 41^{2} + \left(37 a + 18\right)\cdot 41^{3} + \left(15 a + 11\right)\cdot 41^{4} + \left(21 a + 6\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 23 a + 18 + \left(27 a + 14\right)\cdot 41 + \left(12 a + 14\right)\cdot 41^{2} + 15 a\cdot 41^{3} + \left(25 a + 33\right)\cdot 41^{4} + \left(18 a + 2\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 2 a + 23 + \left(22 a + 11\right)\cdot 41 + \left(39 a + 32\right)\cdot 41^{2} + \left(39 a + 5\right)\cdot 41^{3} + \left(4 a + 35\right)\cdot 41^{4} + \left(31 a + 9\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 19 a + 38 + \left(35 a + 11\right)\cdot 41 + \left(9 a + 5\right)\cdot 41^{2} + \left(3 a + 19\right)\cdot 41^{3} + \left(25 a + 21\right)\cdot 41^{4} + \left(19 a + 13\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 39 a + 29 + \left(18 a + 34\right)\cdot 41 + \left(a + 5\right)\cdot 41^{2} + \left(a + 4\right)\cdot 41^{3} + \left(36 a + 10\right)\cdot 41^{4} + \left(9 a + 16\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,6,2)(3,4,5)$ |
| $(1,6,2)$ |
| $(1,5,2,4,6,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $3$ |
$2$ |
$(1,4)(2,3)(5,6)$ |
$0$ |
$0$ |
| $1$ |
$3$ |
$(1,6,2)(3,4,5)$ |
$2 \zeta_{3}$ |
$-2 \zeta_{3} - 2$ |
| $1$ |
$3$ |
$(1,2,6)(3,5,4)$ |
$-2 \zeta_{3} - 2$ |
$2 \zeta_{3}$ |
| $2$ |
$3$ |
$(1,6,2)$ |
$\zeta_{3} + 1$ |
$-\zeta_{3}$ |
| $2$ |
$3$ |
$(1,2,6)$ |
$-\zeta_{3}$ |
$\zeta_{3} + 1$ |
| $2$ |
$3$ |
$(1,2,6)(3,4,5)$ |
$-1$ |
$-1$ |
| $3$ |
$6$ |
$(1,5,2,4,6,3)$ |
$0$ |
$0$ |
| $3$ |
$6$ |
$(1,3,6,4,2,5)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.