Properties

Label 2.2e2_7_17.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 7 \cdot 17 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$476= 2^{2} \cdot 7 \cdot 17 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 6 x^{4} - 14 x^{3} + 11 x^{2} - 14 x + 33 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 20 + \left(28 a + 37\right)\cdot 41 + \left(21 a + 10\right)\cdot 41^{2} + \left(39 a + 15\right)\cdot 41^{3} + \left(39 a + 12\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 a + 3 + \left(23 a + 4\right)\cdot 41 + \left(21 a + 21\right)\cdot 41^{2} + \left(12 a + 24\right)\cdot 41^{3} + \left(4 a + 6\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 16 + \left(17 a + 15\right)\cdot 41 + \left(19 a + 21\right)\cdot 41^{2} + \left(28 a + 40\right)\cdot 41^{3} + \left(36 a + 6\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 12 + \left(4 a + 34\right)\cdot 41 + \left(38 a + 37\right)\cdot 41^{2} + \left(2 a + 20\right)\cdot 41^{3} + \left(6 a + 35\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 35 a + 30 + \left(36 a + 40\right)\cdot 41 + \left(2 a + 24\right)\cdot 41^{2} + \left(38 a + 32\right)\cdot 41^{3} + \left(34 a + 9\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 33 a + 3 + \left(12 a + 32\right)\cdot 41 + \left(19 a + 6\right)\cdot 41^{2} + \left(a + 30\right)\cdot 41^{3} + \left(a + 10\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4,6)$
$(1,5,3)$
$(1,6,5,4,3,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,4)(2,5)(3,6)$ $0$ $0$
$1$ $3$ $(1,5,3)(2,6,4)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,3,5)(2,4,6)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,5,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,3,5)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,5,3)(2,4,6)$ $-1$ $-1$
$3$ $6$ $(1,6,5,4,3,2)$ $0$ $0$
$3$ $6$ $(1,2,3,4,5,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.