Properties

Label 2.2e2_7_163.6t3.3c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 7 \cdot 163 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$4564= 2^{2} \cdot 7 \cdot 163 $
Artin number field: Splitting field of $f= x^{6} - 9 x^{4} - 10 x^{3} + 91 x^{2} + 290 x + 314 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.2e2_7_163.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 20 + \left(6 a + 15\right)\cdot 29 + \left(25 a + 12\right)\cdot 29^{2} + \left(21 a + 15\right)\cdot 29^{3} + \left(8 a + 1\right)\cdot 29^{4} + \left(21 a + 23\right)\cdot 29^{5} + \left(28 a + 14\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 14 + \left(25 a + 6\right)\cdot 29 + \left(3 a + 6\right)\cdot 29^{2} + \left(21 a + 11\right)\cdot 29^{3} + \left(24 a + 1\right)\cdot 29^{4} + \left(13 a + 16\right)\cdot 29^{5} + 28 a\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 9 + 26\cdot 29 + 10\cdot 29^{2} + 19\cdot 29^{3} + 21\cdot 29^{4} + 22\cdot 29^{5} + 28\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 5 + 2\cdot 29 + 12\cdot 29^{2} + 2\cdot 29^{3} + 22\cdot 29^{4} + 17\cdot 29^{5} + 8\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 24 a + 16 + \left(22 a + 12\right)\cdot 29 + \left(3 a + 16\right)\cdot 29^{2} + \left(7 a + 12\right)\cdot 29^{3} + \left(20 a + 23\right)\cdot 29^{4} + \left(7 a + 4\right)\cdot 29^{5} + 21\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 23 + \left(3 a + 23\right)\cdot 29 + \left(25 a + 28\right)\cdot 29^{2} + \left(7 a + 25\right)\cdot 29^{3} + \left(4 a + 16\right)\cdot 29^{4} + \left(15 a + 2\right)\cdot 29^{5} + 13\cdot 29^{6} +O\left(29^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,3)(2,4)(5,6)$
$(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,6)$$-2$
$3$$2$$(1,3)(2,4)(5,6)$$0$
$3$$2$$(1,4)(2,3)$$0$
$2$$3$$(1,4,5)(2,3,6)$$-1$
$2$$6$$(1,6,4,2,5,3)$$1$
The blue line marks the conjugacy class containing complex conjugation.