Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 23 a + 31 + \left(10 a + 32\right)\cdot 41 + \left(a + 37\right)\cdot 41^{2} + \left(15 a + 8\right)\cdot 41^{3} + \left(23 a + 5\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 7 a + 40 + \left(33 a + 7\right)\cdot 41 + \left(25 a + 26\right)\cdot 41^{2} + \left(27 a + 17\right)\cdot 41^{3} + \left(5 a + 21\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 34 a + 20 + \left(7 a + 18\right)\cdot 41 + \left(15 a + 29\right)\cdot 41^{2} + \left(13 a + 33\right)\cdot 41^{3} + \left(35 a + 10\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 25 a + 32 + \left(22 a + 30\right)\cdot 41 + \left(24 a + 14\right)\cdot 41^{2} + \left(12 a + 39\right)\cdot 41^{3} + \left(23 a + 24\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 18 a + 18 + 30 a\cdot 41 + \left(39 a + 31\right)\cdot 41^{2} + \left(25 a + 11\right)\cdot 41^{3} + \left(17 a + 19\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 16 a + 25 + \left(18 a + 32\right)\cdot 41 + \left(16 a + 24\right)\cdot 41^{2} + \left(28 a + 11\right)\cdot 41^{3} + 17 a\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,3,4)$ |
| $(1,2,3,6,4,5)$ |
| $(2,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $3$ | $2$ | $(1,6)(2,4)(3,5)$ | $0$ |
| $1$ | $3$ | $(1,3,4)(2,6,5)$ | $-2 \zeta_{3} - 2$ |
| $1$ | $3$ | $(1,4,3)(2,5,6)$ | $2 \zeta_{3}$ |
| $2$ | $3$ | $(1,3,4)$ | $-\zeta_{3}$ |
| $2$ | $3$ | $(1,4,3)$ | $\zeta_{3} + 1$ |
| $2$ | $3$ | $(1,3,4)(2,5,6)$ | $-1$ |
| $3$ | $6$ | $(1,2,3,6,4,5)$ | $0$ |
| $3$ | $6$ | $(1,5,4,6,3,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.