Properties

Label 2.2e2_7_11.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 7 \cdot 11 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$308= 2^{2} \cdot 7 \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 6 x^{6} + 37 x^{4} + 224 x^{2} + 196 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_7_11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 11\cdot 43^{2} + 21\cdot 43^{3} + 41\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 3\cdot 43 + 37\cdot 43^{2} + 7\cdot 43^{3} + 15\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 + 25\cdot 43 + 30\cdot 43^{2} + 19\cdot 43^{3} + 21\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 14 + 28\cdot 43 + 13\cdot 43^{2} + 6\cdot 43^{3} + 38\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 29 + 14\cdot 43 + 29\cdot 43^{2} + 36\cdot 43^{3} + 4\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 34 + 17\cdot 43 + 12\cdot 43^{2} + 23\cdot 43^{3} + 21\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 35 + 39\cdot 43 + 5\cdot 43^{2} + 35\cdot 43^{3} + 27\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 40 + 42\cdot 43 + 31\cdot 43^{2} + 21\cdot 43^{3} + 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,8)(4,7)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,3)(2,7)(4,5)(6,8)$$0$
$2$$4$$(1,7,6,4)(2,3,5,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.