Properties

Label 2.2e2_7_11.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 7 \cdot 11 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$308= 2^{2} \cdot 7 \cdot 11 $
Artin number field: Splitting field of $f= x^{8} + 6 x^{6} - 5 x^{4} + 266 x^{2} + 49 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_7_11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 107 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 11 + 33\cdot 107 + 90\cdot 107^{2} + 79\cdot 107^{3} + 91\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 + 49\cdot 107 + 61\cdot 107^{2} + 56\cdot 107^{3} + 65\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 + 62\cdot 107 + 99\cdot 107^{2} + 103\cdot 107^{3} + 99\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 41 + 78\cdot 107 + 70\cdot 107^{2} + 80\cdot 107^{3} + 73\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 66 + 28\cdot 107 + 36\cdot 107^{2} + 26\cdot 107^{3} + 33\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 76 + 44\cdot 107 + 7\cdot 107^{2} + 3\cdot 107^{3} + 7\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 86 + 57\cdot 107 + 45\cdot 107^{2} + 50\cdot 107^{3} + 41\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 96 + 73\cdot 107 + 16\cdot 107^{2} + 27\cdot 107^{3} + 15\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,8)(3,5)(4,6)$$-2$
$2$$2$$(1,2)(3,6)(4,5)(7,8)$$0$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$4$$(1,4,7,6)(2,3,8,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.