Properties

Label 2.2e2_7_11.4t3.1c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{2} \cdot 7 \cdot 11 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$308= 2^{2} \cdot 7 \cdot 11 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + x^{2} - 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_7_11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 107 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 18 + 90\cdot 107 + 21\cdot 107^{2} + 68\cdot 107^{3} + 73\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 38 + 12\cdot 107 + 31\cdot 107^{2} + 92\cdot 107^{3} + 81\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 70 + 94\cdot 107 + 75\cdot 107^{2} + 14\cdot 107^{3} + 25\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 90 + 16\cdot 107 + 85\cdot 107^{2} + 38\cdot 107^{3} + 33\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(2,3)$$0$
$2$$4$$(1,2,4,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.