Properties

Label 2.2e2_73.6t5.2c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 73 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$292= 2^{2} \cdot 73 $
Artin number field: Splitting field of $f= x^{9} - 16 x^{7} - 4 x^{6} + 61 x^{5} - 6 x^{4} - 95 x^{3} + 16 x^{2} + 4 x - 24 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.2e2_73.6t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 8 + \left(5 a^{2} + 6 a + 1\right)\cdot 13 + \left(8 a^{2} + 4 a + 11\right)\cdot 13^{2} + \left(12 a^{2} + 9 a + 4\right)\cdot 13^{3} + \left(6 a^{2} + 7 a + 6\right)\cdot 13^{4} + \left(7 a + 12\right)\cdot 13^{5} + \left(7 a^{2} + 11 a + 2\right)\cdot 13^{6} + \left(a^{2} + 9 a + 2\right)\cdot 13^{7} + \left(8 a^{2} + 12 a + 12\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 12 a^{2} + a + 11 + \left(8 a^{2} + 12 a + 6\right)\cdot 13 + \left(12 a^{2} + 10 a + 12\right)\cdot 13^{2} + \left(5 a^{2} + 12 a + 8\right)\cdot 13^{3} + \left(12 a^{2} + a\right)\cdot 13^{4} + \left(12 a^{2} + 8 a + 3\right)\cdot 13^{5} + \left(11 a^{2} + 5\right)\cdot 13^{6} + \left(6 a^{2} + 10 a + 9\right)\cdot 13^{7} + \left(5 a^{2} + 12 a + 8\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 8 a + \left(5 a^{2} + 6 a + 4\right)\cdot 13 + \left(8 a^{2} + 4 a + 12\right)\cdot 13^{2} + \left(12 a^{2} + 9 a + 5\right)\cdot 13^{3} + \left(6 a^{2} + 7 a + 11\right)\cdot 13^{4} + \left(7 a + 9\right)\cdot 13^{5} + \left(7 a^{2} + 11 a + 3\right)\cdot 13^{6} + \left(a^{2} + 9 a + 12\right)\cdot 13^{7} + \left(8 a^{2} + 12 a + 1\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$
$r_{ 4 }$ $=$ $ a^{2} + 4 a + 10 + \left(12 a^{2} + 7 a + 4\right)\cdot 13 + \left(4 a^{2} + 10 a + 3\right)\cdot 13^{2} + \left(7 a^{2} + 3 a + 3\right)\cdot 13^{3} + \left(6 a^{2} + 3 a + 2\right)\cdot 13^{4} + \left(12 a^{2} + 10 a + 4\right)\cdot 13^{5} + \left(6 a^{2} + 12\right)\cdot 13^{6} + \left(4 a^{2} + 6 a + 11\right)\cdot 13^{7} + \left(12 a^{2} + 11\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 12 a^{2} + a + 3 + \left(8 a^{2} + 12 a + 9\right)\cdot 13 + \left(12 a^{2} + 10 a\right)\cdot 13^{2} + \left(5 a^{2} + 12 a + 10\right)\cdot 13^{3} + \left(12 a^{2} + a + 5\right)\cdot 13^{4} + \left(12 a^{2} + 8 a\right)\cdot 13^{5} + \left(11 a^{2} + 6\right)\cdot 13^{6} + \left(6 a^{2} + 10 a + 6\right)\cdot 13^{7} + \left(5 a^{2} + 12 a + 11\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$
$r_{ 6 }$ $=$ $ a^{2} + 4 a + 5 + \left(12 a^{2} + 7 a + 2\right)\cdot 13 + \left(4 a^{2} + 10 a + 2\right)\cdot 13^{2} + \left(7 a^{2} + 3 a + 2\right)\cdot 13^{3} + \left(6 a^{2} + 3 a + 10\right)\cdot 13^{4} + \left(12 a^{2} + 10 a + 6\right)\cdot 13^{5} + \left(6 a^{2} + 11\right)\cdot 13^{6} + \left(4 a^{2} + 6 a + 1\right)\cdot 13^{7} + \left(12 a^{2} + 9\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 8 a + 5 + \left(5 a^{2} + 6 a + 1\right)\cdot 13 + \left(8 a^{2} + 4 a + 10\right)\cdot 13^{2} + \left(12 a^{2} + 9 a\right)\cdot 13^{3} + \left(6 a^{2} + 7 a + 10\right)\cdot 13^{4} + \left(7 a + 5\right)\cdot 13^{5} + \left(7 a^{2} + 11 a + 8\right)\cdot 13^{6} + \left(a^{2} + 9 a + 4\right)\cdot 13^{7} + \left(8 a^{2} + 12 a + 5\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$
$r_{ 8 }$ $=$ $ a^{2} + 4 a + 2 + \left(12 a^{2} + 7 a + 2\right)\cdot 13 + \left(4 a^{2} + 10 a + 1\right)\cdot 13^{2} + \left(7 a^{2} + 3 a + 11\right)\cdot 13^{3} + \left(6 a^{2} + 3 a\right)\cdot 13^{4} + \left(12 a^{2} + 10 a\right)\cdot 13^{5} + \left(6 a^{2} + 4\right)\cdot 13^{6} + \left(4 a^{2} + 6 a + 4\right)\cdot 13^{7} + \left(12 a^{2} + 2\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$
$r_{ 9 }$ $=$ $ 12 a^{2} + a + 8 + \left(8 a^{2} + 12 a + 6\right)\cdot 13 + \left(12 a^{2} + 10 a + 11\right)\cdot 13^{2} + \left(5 a^{2} + 12 a + 4\right)\cdot 13^{3} + \left(12 a^{2} + a + 4\right)\cdot 13^{4} + \left(12 a^{2} + 8 a + 9\right)\cdot 13^{5} + \left(11 a^{2} + 10\right)\cdot 13^{6} + \left(6 a^{2} + 10 a + 11\right)\cdot 13^{7} + \left(5 a^{2} + 12 a + 1\right)\cdot 13^{8} +O\left(13^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,2,5,4,8,7)(3,6,9)$
$(2,3)(4,9)(6,7)$
$(1,9)(3,8)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,4)(2,8)(5,7)$$0$
$1$$3$$(1,5,8)(2,4,7)(3,9,6)$$-2 \zeta_{3} - 2$
$1$$3$$(1,8,5)(2,7,4)(3,6,9)$$2 \zeta_{3}$
$2$$3$$(1,3,7)(2,5,9)(4,8,6)$$-\zeta_{3}$
$2$$3$$(1,7,3)(2,9,5)(4,6,8)$$\zeta_{3} + 1$
$2$$3$$(1,4,9)(2,3,8)(5,7,6)$$-1$
$3$$6$$(1,2,5,4,8,7)(3,6,9)$$0$
$3$$6$$(1,7,8,4,5,2)(3,9,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.