Properties

Label 2.2e2_73.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 73 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$292= 2^{2} \cdot 73 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} + 6 x^{5} + 37 x^{4} - 94 x^{3} + 98 x^{2} - 84 x + 36 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 46\cdot 89 + 58\cdot 89^{2} + 5\cdot 89^{3} + 13\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 88\cdot 89 + 86\cdot 89^{2} + 83\cdot 89^{3} + 81\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 30 + 86\cdot 89 + 73\cdot 89^{2} + 54\cdot 89^{3} + 41\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 48 + 46\cdot 89 + 47\cdot 89^{2} + 33\cdot 89^{3} + 41\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 55 + 75\cdot 89 + 83\cdot 89^{2} + 27\cdot 89^{3} + 38\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 57 + 86\cdot 89 + 57\cdot 89^{2} + 10\cdot 89^{3} + 34\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 69 + 56\cdot 89 + 48\cdot 89^{2} + 32\cdot 89^{3} + 16\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 88 + 47\cdot 89 + 76\cdot 89^{2} + 17\cdot 89^{3} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,8)(3,7)(4,6)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,5)(2,8)(3,7)(4,6)$ $0$
$2$ $4$ $(1,8,3,6)(2,5,4,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.