Properties

Label 2.1700.8t11.c.a
Dimension $2$
Group $Q_8:C_2$
Conductor $1700$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8:C_2$
Conductor: \(1700\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 17 \)
Artin stem field: Galois closure of 8.0.1156000000.2
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Determinant: 1.340.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(i, \sqrt{17})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - x^{6} + 16x^{4} - 10x^{3} - 16x^{2} + 50x + 41 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 2 + 57\cdot 89 + 35\cdot 89^{2} + 18\cdot 89^{3} + 13\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 4 + 84\cdot 89 + 53\cdot 89^{2} + 21\cdot 89^{3} + 27\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 11 + 25\cdot 89 + 59\cdot 89^{2} + 34\cdot 89^{3} + 42\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 13 + 83\cdot 89 + 47\cdot 89^{2} + 76\cdot 89^{3} + 46\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 14 + 12\cdot 89 + 51\cdot 89^{2} + 78\cdot 89^{3} + 4\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 35 + 70\cdot 89 + 82\cdot 89^{2} + 87\cdot 89^{3} + 77\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 37 + 29\cdot 89 + 82\cdot 89^{2} + 80\cdot 89^{3} + 25\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 62 + 83\cdot 89 + 31\cdot 89^{2} + 46\cdot 89^{3} + 28\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,6)(3,8)(4,7)$
$(1,7,5,4)(2,8,6,3)$
$(1,3)(2,7)(4,6)(5,8)$
$(3,8)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,8)(4,7)$$-2$
$2$$2$$(1,3)(2,7)(4,6)(5,8)$$0$
$2$$2$$(3,8)(4,7)$$0$
$2$$2$$(1,7)(2,8)(3,6)(4,5)$$0$
$1$$4$$(1,2,5,6)(3,7,8,4)$$-2 \zeta_{4}$
$1$$4$$(1,6,5,2)(3,4,8,7)$$2 \zeta_{4}$
$2$$4$$(1,7,5,4)(2,8,6,3)$$0$
$2$$4$$(1,8,5,3)(2,4,6,7)$$0$
$2$$4$$(1,2,5,6)(3,4,8,7)$$0$

The blue line marks the conjugacy class containing complex conjugation.