Properties

Label 2.2e2_5e2_17.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 5^{2} \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1700= 2^{2} \cdot 5^{2} \cdot 17 $
Artin number field: Splitting field of $f= x^{8} + 7 x^{6} - 17 x^{4} + 57 x^{2} + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 110\cdot 137 + 99\cdot 137^{2} + 2\cdot 137^{3} + 120\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 + 130\cdot 137 + 62\cdot 137^{2} + 13\cdot 137^{3} + 132\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 47 + 33\cdot 137 + 61\cdot 137^{2} + 73\cdot 137^{3} + 91\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 59 + 75\cdot 137 + 88\cdot 137^{2} + 9\cdot 137^{3} + 27\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 78 + 61\cdot 137 + 48\cdot 137^{2} + 127\cdot 137^{3} + 109\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 90 + 103\cdot 137 + 75\cdot 137^{2} + 63\cdot 137^{3} + 45\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 119 + 6\cdot 137 + 74\cdot 137^{2} + 123\cdot 137^{3} + 4\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 125 + 26\cdot 137 + 37\cdot 137^{2} + 134\cdot 137^{3} + 16\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,4,6)(3,8,7,5)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,6)(3,7)(5,8)$$-2$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$2$$(1,5)(2,7)(3,6)(4,8)$$0$
$2$$4$$(1,2,4,6)(3,8,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.