Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 73 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 10 + 34\cdot 73 + 23\cdot 73^{2} + 42\cdot 73^{3} + 28\cdot 73^{4} + 45\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 22 + 49\cdot 73 + 22\cdot 73^{2} + 38\cdot 73^{3} + 73^{4} + 27\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 23 + 64\cdot 73 + 25\cdot 73^{2} + 73^{3} + 70\cdot 73^{4} + 56\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 28 + 7\cdot 73 + 65\cdot 73^{2} + 45\cdot 73^{3} + 48\cdot 73^{4} + 58\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 29 + 36\cdot 73 + 55\cdot 73^{2} + 47\cdot 73^{3} + 57\cdot 73^{4} + 19\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 54 + 68\cdot 73 + 3\cdot 73^{2} + 23\cdot 73^{3} + 21\cdot 73^{4} + 22\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 60 + 65\cdot 73 + 5\cdot 73^{2} + 36\cdot 73^{3} + 8\cdot 73^{4} + 35\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 68 + 38\cdot 73 + 16\cdot 73^{2} + 57\cdot 73^{3} + 55\cdot 73^{4} + 26\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2)(4,7)$ |
| $(1,6)(2,3)(4,8)(5,7)$ |
| $(1,7,2,4)(3,5,6,8)$ |
| $(1,7,2,4)$ |
| $(1,2)(3,6)(4,7)(5,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,2)(3,6)(4,7)(5,8)$ |
$-2$ |
$-2$ |
| $2$ |
$2$ |
$(1,2)(4,7)$ |
$0$ |
$0$ |
| $4$ |
$2$ |
$(1,6)(2,3)(4,8)(5,7)$ |
$0$ |
$0$ |
| $1$ |
$4$ |
$(1,7,2,4)(3,8,6,5)$ |
$-2 \zeta_{4}$ |
$2 \zeta_{4}$ |
| $1$ |
$4$ |
$(1,4,2,7)(3,5,6,8)$ |
$2 \zeta_{4}$ |
$-2 \zeta_{4}$ |
| $2$ |
$4$ |
$(1,7,2,4)(3,5,6,8)$ |
$0$ |
$0$ |
| $2$ |
$4$ |
$(1,7,2,4)$ |
$\zeta_{4} - 1$ |
$-\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,4,2,7)$ |
$-\zeta_{4} - 1$ |
$\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,2)(3,5,6,8)(4,7)$ |
$-\zeta_{4} + 1$ |
$\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(1,2)(3,8,6,5)(4,7)$ |
$\zeta_{4} + 1$ |
$-\zeta_{4} + 1$ |
| $4$ |
$4$ |
$(1,6,2,3)(4,8,7,5)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,6,7,5,2,3,4,8)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,5,4,6,2,8,7,3)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.