Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 137 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 + 78\cdot 137 + 12\cdot 137^{2} + 111\cdot 137^{3} + 82\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 25 + 26\cdot 137 + 115\cdot 137^{2} + 123\cdot 137^{3} + 8\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 53 + 54\cdot 137 + 66\cdot 137^{2} + 107\cdot 137^{3} + 98\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 56 + 46\cdot 137 + 93\cdot 137^{2} + 60\cdot 137^{3} + 30\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 83 + 100\cdot 137 + 24\cdot 137^{2} + 2\cdot 137^{3} + 87\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 87 + 88\cdot 137 + 11\cdot 137^{2} + 4\cdot 137^{3} + 135\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 104 + 98\cdot 137 + 48\cdot 137^{2} + 54\cdot 137^{3} + 105\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 134 + 54\cdot 137 + 38\cdot 137^{2} + 84\cdot 137^{3} + 136\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(2,8)(3,5)(6,7)$ |
| $(1,5,8,6)(2,3,4,7)$ |
| $(1,8)(5,6)$ |
| $(1,8)(2,4)(3,7)(5,6)$ |
| $(1,5,8,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,8)(2,4)(3,7)(5,6)$ |
$-2$ |
$-2$ |
| $2$ |
$2$ |
$(1,8)(5,6)$ |
$0$ |
$0$ |
| $4$ |
$2$ |
$(1,4)(2,8)(3,5)(6,7)$ |
$0$ |
$0$ |
| $1$ |
$4$ |
$(1,5,8,6)(2,7,4,3)$ |
$-2 \zeta_{4}$ |
$2 \zeta_{4}$ |
| $1$ |
$4$ |
$(1,6,8,5)(2,3,4,7)$ |
$2 \zeta_{4}$ |
$-2 \zeta_{4}$ |
| $2$ |
$4$ |
$(1,5,8,6)(2,3,4,7)$ |
$0$ |
$0$ |
| $2$ |
$4$ |
$(1,5,8,6)$ |
$\zeta_{4} - 1$ |
$-\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,6,8,5)$ |
$-\zeta_{4} - 1$ |
$\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,8)(2,3,4,7)(5,6)$ |
$-\zeta_{4} + 1$ |
$\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(1,8)(2,7,4,3)(5,6)$ |
$\zeta_{4} + 1$ |
$-\zeta_{4} + 1$ |
| $4$ |
$4$ |
$(1,4,8,2)(3,6,7,5)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,4,5,3,8,2,6,7)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,3,6,4,8,7,5,2)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.