Properties

Label 2.2e2_5e2_13e2.8t17.1
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{2} \cdot 5^{2} \cdot 13^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$16900= 2^{2} \cdot 5^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 4 x^{6} - 8 x^{5} + 10 x^{4} - 12 x^{3} + 19 x^{2} - 8 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 78\cdot 137 + 12\cdot 137^{2} + 111\cdot 137^{3} + 82\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 26\cdot 137 + 115\cdot 137^{2} + 123\cdot 137^{3} + 8\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 53 + 54\cdot 137 + 66\cdot 137^{2} + 107\cdot 137^{3} + 98\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 56 + 46\cdot 137 + 93\cdot 137^{2} + 60\cdot 137^{3} + 30\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 83 + 100\cdot 137 + 24\cdot 137^{2} + 2\cdot 137^{3} + 87\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 87 + 88\cdot 137 + 11\cdot 137^{2} + 4\cdot 137^{3} + 135\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 104 + 98\cdot 137 + 48\cdot 137^{2} + 54\cdot 137^{3} + 105\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 134 + 54\cdot 137 + 38\cdot 137^{2} + 84\cdot 137^{3} + 136\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,8)(3,5)(6,7)$
$(1,5,8,6)(2,3,4,7)$
$(1,8)(5,6)$
$(1,8)(2,4)(3,7)(5,6)$
$(1,5,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,4)(3,7)(5,6)$ $-2$ $-2$
$2$ $2$ $(1,8)(5,6)$ $0$ $0$
$4$ $2$ $(1,4)(2,8)(3,5)(6,7)$ $0$ $0$
$1$ $4$ $(1,5,8,6)(2,7,4,3)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,6,8,5)(2,3,4,7)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,5,8,6)(2,3,4,7)$ $0$ $0$
$2$ $4$ $(1,5,8,6)$ $\zeta_{4} - 1$ $-\zeta_{4} - 1$
$2$ $4$ $(1,6,8,5)$ $-\zeta_{4} - 1$ $\zeta_{4} - 1$
$2$ $4$ $(1,8)(2,3,4,7)(5,6)$ $-\zeta_{4} + 1$ $\zeta_{4} + 1$
$2$ $4$ $(1,8)(2,7,4,3)(5,6)$ $\zeta_{4} + 1$ $-\zeta_{4} + 1$
$4$ $4$ $(1,4,8,2)(3,6,7,5)$ $0$ $0$
$4$ $8$ $(1,4,5,3,8,2,6,7)$ $0$ $0$
$4$ $8$ $(1,3,6,4,8,7,5,2)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.