Properties

Label 2.2e2_5e2_13.8t11.2
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{2} \cdot 5^{2} \cdot 13 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$1300= 2^{2} \cdot 5^{2} \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} + 10 x^{5} - 14 x^{4} + 10 x^{3} + 33 x^{2} - 36 x + 41 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 18\cdot 29 + 7\cdot 29^{2} + 2\cdot 29^{3} + 4\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 + 16\cdot 29^{2} + 20\cdot 29^{3} + 25\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 + 4\cdot 29 + 10\cdot 29^{2} + 3\cdot 29^{3} + 18\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 + 14\cdot 29 + 17\cdot 29^{2} + 21\cdot 29^{3} + 17\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 + 22\cdot 29 + 29^{2} + 14\cdot 29^{3} + 8\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 + 2\cdot 29 + 19\cdot 29^{2} + 20\cdot 29^{3} + 12\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 24 + 4\cdot 29 + 4\cdot 29^{2} + 4\cdot 29^{3} + 12\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 27 + 18\cdot 29 + 10\cdot 29^{2} + 17\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,3)(5,7)(6,8)$
$(1,7)(2,8)(3,6)(4,5)$
$(1,6,7,3)(2,5,8,4)$
$(2,8)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,7)(2,8)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(1,4)(2,3)(5,7)(6,8)$ $0$ $0$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$ $0$
$2$ $2$ $(2,8)(4,5)$ $0$ $0$
$1$ $4$ $(1,6,7,3)(2,4,8,5)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,3,7,6)(2,5,8,4)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,6,7,3)(2,5,8,4)$ $0$ $0$
$2$ $4$ $(1,5,7,4)(2,3,8,6)$ $0$ $0$
$2$ $4$ $(1,2,7,8)(3,5,6,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.