Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 a + 28 + \left(5 a + 20\right)\cdot 41 + \left(22 a + 37\right)\cdot 41^{2} + \left(36 a + 27\right)\cdot 41^{3} + \left(2 a + 13\right)\cdot 41^{4} + \left(6 a + 31\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 13 a + 15 + \left(6 a + 20\right)\cdot 41 + \left(33 a + 19\right)\cdot 41^{2} + \left(20 a + 16\right)\cdot 41^{3} + \left(34 a + 6\right)\cdot 41^{4} + \left(39 a + 23\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 28 a + 13 + \left(34 a + 26\right)\cdot 41 + \left(7 a + 30\right)\cdot 41^{2} + \left(20 a + 4\right)\cdot 41^{3} + \left(6 a + 7\right)\cdot 41^{4} + \left(a + 26\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 27 a + 29 + \left(35 a + 22\right)\cdot 41 + \left(18 a + 16\right)\cdot 41^{2} + \left(4 a + 33\right)\cdot 41^{3} + \left(38 a + 26\right)\cdot 41^{4} + \left(34 a + 5\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ a + 39 + \left(40 a + 38\right)\cdot 41 + \left(29 a + 4\right)\cdot 41^{2} + \left(15 a + 32\right)\cdot 41^{3} + \left(9 a + 7\right)\cdot 41^{4} + \left(7 a + 12\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 40 a + 1 + 35\cdot 41 + \left(11 a + 13\right)\cdot 41^{2} + \left(25 a + 8\right)\cdot 41^{3} + \left(31 a + 20\right)\cdot 41^{4} + \left(33 a + 24\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,5,4)$ |
| $(1,5,3,4,6,2)$ |
| $(1,3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $3$ |
$2$ |
$(1,4)(2,3)(5,6)$ |
$0$ |
$0$ |
| $1$ |
$3$ |
$(1,3,6)(2,5,4)$ |
$2 \zeta_{3}$ |
$-2 \zeta_{3} - 2$ |
| $1$ |
$3$ |
$(1,6,3)(2,4,5)$ |
$-2 \zeta_{3} - 2$ |
$2 \zeta_{3}$ |
| $2$ |
$3$ |
$(1,3,6)$ |
$\zeta_{3} + 1$ |
$-\zeta_{3}$ |
| $2$ |
$3$ |
$(1,6,3)$ |
$-\zeta_{3}$ |
$\zeta_{3} + 1$ |
| $2$ |
$3$ |
$(1,6,3)(2,5,4)$ |
$-1$ |
$-1$ |
| $3$ |
$6$ |
$(1,5,3,4,6,2)$ |
$0$ |
$0$ |
| $3$ |
$6$ |
$(1,2,6,4,3,5)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.