Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{3} + 2 x + 18 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 17 a^{2} + a + 17 + \left(2 a^{2} + 2 a + 20\right)\cdot 23 + \left(3 a^{2} + 11 a + 1\right)\cdot 23^{2} + \left(22 a + 14\right)\cdot 23^{3} + \left(12 a^{2} + 7 a + 3\right)\cdot 23^{4} + \left(17 a^{2} + 6 a + 2\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 22 a^{2} + 21 a + 22 + \left(18 a^{2} + 9 a + 12\right)\cdot 23 + \left(20 a^{2} + 19 a + 4\right)\cdot 23^{2} + \left(8 a^{2} + 2 a + 3\right)\cdot 23^{3} + \left(13 a^{2} + 9 a + 6\right)\cdot 23^{4} + \left(5 a^{2} + 3 a + 16\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 12 a^{2} + 2 a + 6 + \left(18 a^{2} + 19 a + 12\right)\cdot 23 + \left(7 a^{2} + 7 a + 20\right)\cdot 23^{2} + \left(2 a^{2} + 11 a + 20\right)\cdot 23^{3} + \left(7 a^{2} + 17 a + 2\right)\cdot 23^{4} + \left(16 a^{2} + 20 a + 11\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 20 a^{2} + 14 a + 21 + \left(20 a^{2} + 22 a + 21\right)\cdot 23 + \left(17 a^{2} + 14 a + 13\right)\cdot 23^{2} + \left(8 a^{2} + 4 a + 2\right)\cdot 23^{3} + \left(15 a^{2} + 5 a + 8\right)\cdot 23^{4} + \left(a^{2} + 7 a + 19\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 10 a^{2} + 18 a + 6 + \left(20 a^{2} + 8 a + 7\right)\cdot 23 + \left(4 a^{2} + 3 a + 6\right)\cdot 23^{2} + \left(2 a^{2} + 13 a + 17\right)\cdot 23^{3} + \left(9 a^{2} + 13 a + 15\right)\cdot 23^{4} + \left(12 a^{2} + a + 17\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 14 a^{2} + 7 a + 19 + \left(6 a^{2} + 4 a + 11\right)\cdot 23 + \left(20 a^{2} + 11\right)\cdot 23^{2} + \left(11 a^{2} + 7 a + 22\right)\cdot 23^{3} + 11\cdot 23^{4} + \left(5 a^{2} + 18 a + 15\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 4 a^{2} + 20 a + 3 + \left(3 a^{2} + 15 a + 7\right)\cdot 23 + \left(16 a^{2} + 22 a + 16\right)\cdot 23^{2} + \left(6 a^{2} + 13 a + 3\right)\cdot 23^{3} + \left(18 a^{2} + 22 a + 10\right)\cdot 23^{4} + \left(6 a^{2} + 11 a + 21\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 7 a^{2} + a + 7 + \left(a^{2} + 11 a + 12\right)\cdot 23 + \left(22 a^{2} + 15 a + 16\right)\cdot 23^{2} + \left(13 a^{2} + 20 a + 5\right)\cdot 23^{3} + \left(20 a^{2} + 5 a + 13\right)\cdot 23^{4} + \left(22 a^{2} + 13 a + 4\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 9 }$ |
$=$ |
$ 9 a^{2} + 8 a + 14 + \left(22 a^{2} + 21 a + 8\right)\cdot 23 + \left(a^{2} + 19 a\right)\cdot 23^{2} + \left(14 a^{2} + 18 a + 2\right)\cdot 23^{3} + \left(18 a^{2} + 9 a + 20\right)\cdot 23^{4} + \left(3 a^{2} + 9 a + 6\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 9 }$
| Cycle notation |
| $(1,2,8)(3,4,6)(5,7,9)$ |
| $(3,9)(4,5)(6,7)$ |
| $(1,7)(2,9)(5,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 9 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $3$ |
$2$ |
$(1,7)(2,9)(5,8)$ |
$0$ |
$0$ |
| $1$ |
$3$ |
$(1,2,8)(3,4,6)(5,7,9)$ |
$2 \zeta_{3}$ |
$-2 \zeta_{3} - 2$ |
| $1$ |
$3$ |
$(1,8,2)(3,6,4)(5,9,7)$ |
$-2 \zeta_{3} - 2$ |
$2 \zeta_{3}$ |
| $2$ |
$3$ |
$(1,6,7)(2,3,9)(4,5,8)$ |
$-1$ |
$-1$ |
| $2$ |
$3$ |
$(1,3,5)(2,4,7)(6,9,8)$ |
$-\zeta_{3}$ |
$\zeta_{3} + 1$ |
| $2$ |
$3$ |
$(1,5,3)(2,7,4)(6,8,9)$ |
$\zeta_{3} + 1$ |
$-\zeta_{3}$ |
| $3$ |
$6$ |
$(1,9,8,7,2,5)(3,4,6)$ |
$0$ |
$0$ |
| $3$ |
$6$ |
$(1,5,2,7,8,9)(3,6,4)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.