Properties

Label 2.2e2_5_7.6t5.2
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 5 \cdot 7 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$140= 2^{2} \cdot 5 \cdot 7 $
Artin number field: Splitting field of $f= x^{9} - x^{7} - 3 x^{6} + 5 x^{5} + 2 x^{4} - 10 x^{3} - 5 x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{3} + 2 x + 18 $
Roots:
$r_{ 1 }$ $=$ $ 17 a^{2} + a + 17 + \left(2 a^{2} + 2 a + 20\right)\cdot 23 + \left(3 a^{2} + 11 a + 1\right)\cdot 23^{2} + \left(22 a + 14\right)\cdot 23^{3} + \left(12 a^{2} + 7 a + 3\right)\cdot 23^{4} + \left(17 a^{2} + 6 a + 2\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 22 a^{2} + 21 a + 22 + \left(18 a^{2} + 9 a + 12\right)\cdot 23 + \left(20 a^{2} + 19 a + 4\right)\cdot 23^{2} + \left(8 a^{2} + 2 a + 3\right)\cdot 23^{3} + \left(13 a^{2} + 9 a + 6\right)\cdot 23^{4} + \left(5 a^{2} + 3 a + 16\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 12 a^{2} + 2 a + 6 + \left(18 a^{2} + 19 a + 12\right)\cdot 23 + \left(7 a^{2} + 7 a + 20\right)\cdot 23^{2} + \left(2 a^{2} + 11 a + 20\right)\cdot 23^{3} + \left(7 a^{2} + 17 a + 2\right)\cdot 23^{4} + \left(16 a^{2} + 20 a + 11\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 20 a^{2} + 14 a + 21 + \left(20 a^{2} + 22 a + 21\right)\cdot 23 + \left(17 a^{2} + 14 a + 13\right)\cdot 23^{2} + \left(8 a^{2} + 4 a + 2\right)\cdot 23^{3} + \left(15 a^{2} + 5 a + 8\right)\cdot 23^{4} + \left(a^{2} + 7 a + 19\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 10 a^{2} + 18 a + 6 + \left(20 a^{2} + 8 a + 7\right)\cdot 23 + \left(4 a^{2} + 3 a + 6\right)\cdot 23^{2} + \left(2 a^{2} + 13 a + 17\right)\cdot 23^{3} + \left(9 a^{2} + 13 a + 15\right)\cdot 23^{4} + \left(12 a^{2} + a + 17\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 14 a^{2} + 7 a + 19 + \left(6 a^{2} + 4 a + 11\right)\cdot 23 + \left(20 a^{2} + 11\right)\cdot 23^{2} + \left(11 a^{2} + 7 a + 22\right)\cdot 23^{3} + 11\cdot 23^{4} + \left(5 a^{2} + 18 a + 15\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 4 a^{2} + 20 a + 3 + \left(3 a^{2} + 15 a + 7\right)\cdot 23 + \left(16 a^{2} + 22 a + 16\right)\cdot 23^{2} + \left(6 a^{2} + 13 a + 3\right)\cdot 23^{3} + \left(18 a^{2} + 22 a + 10\right)\cdot 23^{4} + \left(6 a^{2} + 11 a + 21\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 7 a^{2} + a + 7 + \left(a^{2} + 11 a + 12\right)\cdot 23 + \left(22 a^{2} + 15 a + 16\right)\cdot 23^{2} + \left(13 a^{2} + 20 a + 5\right)\cdot 23^{3} + \left(20 a^{2} + 5 a + 13\right)\cdot 23^{4} + \left(22 a^{2} + 13 a + 4\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 9 }$ $=$ $ 9 a^{2} + 8 a + 14 + \left(22 a^{2} + 21 a + 8\right)\cdot 23 + \left(a^{2} + 19 a\right)\cdot 23^{2} + \left(14 a^{2} + 18 a + 2\right)\cdot 23^{3} + \left(18 a^{2} + 9 a + 20\right)\cdot 23^{4} + \left(3 a^{2} + 9 a + 6\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,2,8)(3,4,6)(5,7,9)$
$(3,9)(4,5)(6,7)$
$(1,7)(2,9)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,7)(2,9)(5,8)$ $0$ $0$
$1$ $3$ $(1,2,8)(3,4,6)(5,7,9)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,8,2)(3,6,4)(5,9,7)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,6,7)(2,3,9)(4,5,8)$ $-1$ $-1$
$2$ $3$ $(1,3,5)(2,4,7)(6,9,8)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,5,3)(2,7,4)(6,8,9)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$3$ $6$ $(1,9,8,7,2,5)(3,4,6)$ $0$ $0$
$3$ $6$ $(1,5,2,7,8,9)(3,6,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.