Properties

Label 2.2e2_5_61.8t11.1
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{2} \cdot 5 \cdot 61 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$1220= 2^{2} \cdot 5 \cdot 61 $
Artin number field: Splitting field of $f= x^{8} + 9 x^{6} - 4 x^{5} + 29 x^{4} - 18 x^{3} + 39 x^{2} - 20 x + 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 21\cdot 41 + 5\cdot 41^{2} + 41^{3} + 21\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 + 20\cdot 41 + 37\cdot 41^{2} + 34\cdot 41^{3} + 26\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 + 28\cdot 41 + 8\cdot 41^{2} + 13\cdot 41^{3} + 18\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 + 6\cdot 41 + 25\cdot 41^{2} + 13\cdot 41^{3} + 14\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 27 + 12\cdot 41 + 30\cdot 41^{2} + 32\cdot 41^{3} + 15\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 31 + 29\cdot 41 + 31\cdot 41^{2} + 17\cdot 41^{3} + 3\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 32 + 27\cdot 41 + 7\cdot 41^{2} + 12\cdot 41^{3} + 25\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 34 + 17\cdot 41 + 17\cdot 41^{2} + 38\cdot 41^{3} + 38\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,3)(6,7)$
$(1,5)(2,3)(4,8)(6,7)$
$(1,2)(3,5)(4,7)(6,8)$
$(1,8,5,4)(2,6,3,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $-2$ $-2$
$2$ $2$ $(1,2)(3,5)(4,7)(6,8)$ $0$ $0$
$2$ $2$ $(2,3)(6,7)$ $0$ $0$
$2$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $0$ $0$
$1$ $4$ $(1,8,5,4)(2,6,3,7)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,4,5,8)(2,7,3,6)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,6,5,7)(2,8,3,4)$ $0$ $0$
$2$ $4$ $(1,3,5,2)(4,6,8,7)$ $0$ $0$
$2$ $4$ $(1,8,5,4)(2,7,3,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.