Properties

Label 2.2e2_5_47.6t3.6c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 5 \cdot 47 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$940= 2^{2} \cdot 5 \cdot 47 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 4 x^{4} - 26 x^{3} + 84 x^{2} - 152 x + 191 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even
Determinant: 1.2e2_5_47.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 20 + \left(10 a + 22\right)\cdot 23 + \left(2 a + 10\right)\cdot 23^{2} + \left(12 a + 1\right)\cdot 23^{3} + \left(18 a + 12\right)\cdot 23^{4} + \left(11 a + 4\right)\cdot 23^{5} + \left(21 a + 1\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 6 + 17\cdot 23 + \left(4 a + 12\right)\cdot 23^{2} + \left(10 a + 11\right)\cdot 23^{3} + \left(21 a + 4\right)\cdot 23^{4} + \left(a + 11\right)\cdot 23^{5} + \left(21 a + 16\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 19 a + 5 + \left(12 a + 16\right)\cdot 23 + \left(20 a + 5\right)\cdot 23^{2} + 10 a\cdot 23^{3} + \left(4 a + 14\right)\cdot 23^{4} + \left(11 a + 9\right)\cdot 23^{5} + \left(a + 9\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 22 + 6\cdot 23 + 6\cdot 23^{2} + 21\cdot 23^{3} + 19\cdot 23^{4} + 8\cdot 23^{5} + 12\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 3 + \left(22 a + 8\right)\cdot 23 + \left(18 a + 20\right)\cdot 23^{2} + \left(12 a + 4\right)\cdot 23^{3} + \left(a + 14\right)\cdot 23^{4} + \left(21 a + 16\right)\cdot 23^{5} + \left(a + 10\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 15 + 20\cdot 23 + 12\cdot 23^{2} + 6\cdot 23^{3} + 4\cdot 23^{4} + 18\cdot 23^{5} + 18\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,3)(2,5)$
$(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,5)(4,6)$$-2$
$3$$2$$(1,3)(2,5)$$0$
$3$$2$$(1,5)(2,3)(4,6)$$0$
$2$$3$$(1,4,3)(2,6,5)$$-1$
$2$$6$$(1,6,3,2,4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.