Properties

Label 2.2e2_5_31e2.4t3.4
Dimension 2
Group $D_{4}$
Conductor $ 2^{2} \cdot 5 \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$19220= 2^{2} \cdot 5 \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 12 x^{2} + 60 x + 128 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 16 + 24\cdot 41 + 39\cdot 41^{2} + 6\cdot 41^{3} + 28\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 + 2\cdot 41 + 19\cdot 41^{2} + 5\cdot 41^{3} + 9\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 38 + 6\cdot 41 + 12\cdot 41^{2} + 8\cdot 41^{3} + 20\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 40 + 6\cdot 41 + 11\cdot 41^{2} + 20\cdot 41^{3} + 24\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.