Properties

Label 2.2e2_5_31e2.4t3.3
Dimension 2
Group $D_{4}$
Conductor $ 2^{2} \cdot 5 \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$19220= 2^{2} \cdot 5 \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 12 x^{2} - 33 x + 35 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 7 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 7 + 3\cdot 7^{2} + 6\cdot 7^{3} + 5\cdot 7^{5} + 3\cdot 7^{6} +O\left(7^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 1 + 2\cdot 7 + 2\cdot 7^{2} + 3\cdot 7^{3} + 3\cdot 7^{4} + 6\cdot 7^{5} + 6\cdot 7^{6} +O\left(7^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 3 + 5\cdot 7^{2} + 5\cdot 7^{3} + 3\cdot 7^{4} + 3\cdot 7^{5} + 5\cdot 7^{6} +O\left(7^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 4 + 3\cdot 7 + 3\cdot 7^{2} + 5\cdot 7^{3} + 5\cdot 7^{4} + 5\cdot 7^{5} + 4\cdot 7^{6} +O\left(7^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.